Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Viruses ; 15(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36680196

RESUMEN

Aging processes, including immunosenescence, inflammation, inflammasome formation, genomic instability, telomeric attrition, and altered autophagy, are involved in viral infections and they may contribute to increased pathophysiological responses to the SARS-CoV-2 infection in the elderly; this poses additional risks of accelerated aging, which could be found even after recovery. Aging is associated with oxidative damage. Moreover, SARS-CoV-2 infections may increase the production of reactive oxygen species and such infections will disturb the Ca++ balance via an endoplasmic reticulum (ER) stress-mediated unfolded protein response. Although vaccine development and anti-inflammation therapy lower the severity of COVID-19, the prevalence and mortality rates are still alarming in some countries worldwide. In this review, we describe the involvement of viral proteins in activating ER stress transducers and their downstream signals and in inducing inflammation and inflammasome formation. Furthermore, we propose the potential of melatonin as an ER stress modulator, owing to its antioxidant, anti-inflammatory, and immunoregulatory effects in viral infections. Considering its strong safety profile, we suggest that additive melatonin supplementation in the elderly could be beneficial in treating COVID-19.


Asunto(s)
COVID-19 , Melatonina , Humanos , Anciano , Melatonina/uso terapéutico , Melatonina/farmacología , Inflamasomas , SARS-CoV-2/metabolismo , Estrés del Retículo Endoplásmico
2.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142634

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of millions of people around the world. Severe vitamin D deficiency can increase the risk of death in people with COVID-19. There is growing evidence that acute kidney injury (AKI) is common in COVID-19 patients and is associated with poorer clinical outcomes. The kidney effects of SARS-CoV-2 are directly mediated by angiotensin 2-converting enzyme (ACE2) receptors. AKI is also caused by indirect causes such as the hypercoagulable state and microvascular thrombosis. The increased release of soluble urokinase-type plasminogen activator receptor (suPAR) from immature myeloid cells reduces plasminogen activation by the competitive inhibition of urokinase-type plasminogen activator, which results in low plasmin levels and a fibrinolytic state in COVID-19. Frequent hypercoagulability in critically ill patients with COVID-19 may exacerbate the severity of thrombosis. Versican expression in proximal tubular cells leads to the proliferation of interstitial fibroblasts through the C3a and suPAR pathways. Vitamin D attenuates the local expression of podocyte uPAR and decreases elevated circulating suPAR levels caused by systemic inflammation. This decrease preserves the function and structure of the glomerular barrier, thereby maintaining renal function. The attenuated hyperinflammatory state reduces complement activation, resulting in lower serum C3a levels. Vitamin D can also protect against COVID-19 by modulating innate and adaptive immunity, increasing ACE2 expression, and inhibiting the renin-angiotensin-aldosterone system. We hypothesized that by reducing suPAR levels, appropriate vitamin D supplementation could prevent the progression and reduce the severity of AKI in COVID-19 patients, although the data available require further elucidation.


Asunto(s)
Lesión Renal Aguda , Tratamiento Farmacológico de COVID-19 , COVID-19 , Trombosis , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Enzima Convertidora de Angiotensina 2 , Angiotensinas , COVID-19/complicaciones , Fibrinolisina , Humanos , Plasminógeno , Receptores del Activador de Plasminógeno Tipo Uroquinasa , SARS-CoV-2 , Trombosis/complicaciones , Activador de Plasminógeno de Tipo Uroquinasa , Versicanos , Vitamina D , Vitaminas
3.
Int J Med Sci ; 19(8): 1340-1356, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928726

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause immunosuppression and cytokine storm, leading to lung damage and death. The clinical efficacy of anti-SARS-CoV-2 drugs in preventing viral entry into host cells and suppressing viral replication remains inadequate. MicroRNAs (miRNAs) are crucial to the immune response to and pathogenesis of coronaviruses, such as SARS-CoV-2. However, the specific roles of miRNAs in the life cycle of SARS-CoV-2 remain unclear. miRNAs can participate in SARS-CoV-2 infection and pathogenesis through at least four possible mechanisms: 1. host cell miRNA expression interfering with SARS-CoV-2 cell entry, 2. SARS-CoV-2-derived RNA transcripts acting as competitive endogenous RNAs (ceRNAs) that may attenuate host cell miRNA expression, 3. host cell miRNA expression modulating SARS-CoV-2 replication, and 4. SARS-CoV-2-encoded miRNAs silencing the expression of host protein-coding genes. SARS-CoV-2-related miRNAs may be used as diagnostic or prognostic biomarkers for predicting outcomes among patients with SARS-CoV-2 infection. Furthermore, accumulating evidence suggests that dietary polyphenolic compounds may protect against SARS-CoV-2 infection by modulating host cell miRNA expression. These findings have major implications for the future diagnosis and treatment of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , MicroARNs , COVID-19/genética , Suplementos Dietéticos , Humanos , MicroARNs/genética , MicroARNs/metabolismo , SARS-CoV-2 , Replicación Viral/genética
4.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445700

RESUMEN

Severe acute respiratory syndrome coronavirus 2 is a new, highly pathogenic virus that has recently elicited a global pandemic called the 2019 coronavirus disease (COVID-19). COVID-19 is characterized by significant immune dysfunction, which is caused by strong but unregulated innate immunity with depressed adaptive immunity. Reduced and delayed responses to interferons (IFN-I/IFN-III) can increase the synthesis of proinflammatory cytokines and extensive immune cell infiltration into the airways, leading to pulmonary disease. The development of effective treatments for severe COVID-19 patients relies on our knowledge of the pathophysiological components of this imbalanced innate immune response. Strategies to address innate response factors will be essential. Significant efforts are currently underway to develop vaccines against SARS-CoV-2. COVID-19 vaccines, such as inactivated DNA, mRNA, and protein subunit vaccines, have already been applied in clinical use. Various vaccines display different levels of effectiveness, and it is important to continue to optimize and update their composition in order to increase their effectiveness. However, due to the continuous emergence of variant viruses, improving the immunity of the general public may also increase the effectiveness of the vaccines. Many observational studies have demonstrated that serum levels of vitamin D are inversely correlated with the incidence or severity of COVID-19. Extensive evidence has shown that vitamin D supplementation could be vital in mitigating the progression of COVID-19 to reduce its severity. Vitamin D defends against SARS-CoV-2 through a complex mechanism through interactions between the modulation of innate and adaptive immune reactions, ACE2 expression, and inhibition of the renin-angiotensin system (RAS). However, it remains unclear whether Vit-D also plays an important role in the effectiveness of different COVID-19 vaccines. Based on analysis of the molecular mechanism involved, we speculated that vit-D, via various immune signaling pathways, plays a complementary role in the development of vaccine efficacy.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Vitamina D/administración & dosificación , Vitamina D/sangre , Animales , COVID-19/sangre , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Ensayos Clínicos como Asunto , Humanos , Inmunogenicidad Vacunal , Pandemias/prevención & control , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2/aislamiento & purificación , Vitamina D/inmunología
5.
Artículo en Inglés | MEDLINE | ID: mdl-27340421

RESUMEN

Traditional Chinese medicine (TCM) formulates treatment according to body constitution (BC) differentiation. Different constitutions have specific metabolic characteristics and different susceptibility to certain diseases. This study aimed to assess the Yang-Xu constitution using a body constitution questionnaire (BCQ) and clinical blood variables. A BCQ was employed to assess the clinical manifestation of Yang-Xu. The logistic regression model was conducted to explore the relationship between BC scores and biomarkers. Leave-one-out cross-validation (LOOCV) and K-fold cross-validation were performed to evaluate the accuracy of a predictive model in practice. Decision trees (DTs) were conducted to determine the possible relationships between blood biomarkers and BC scores. According to the BCQ analysis, 49% participants without any BC were classified as healthy subjects. Among them, 130 samples were selected for further analysis and divided into two groups. One group comprised healthy subjects without any BC (68%), while subjects of the other group, named as the sub-healthy group, had three BCs (32%). Six biomarkers, CRE, TSH, HB, MONO, RBC, and LH, were found to have the greatest impact on BCQ outcomes in Yang-Xu subjects. This study indicated significant biochemical differences in Yang-Xu subjects, which may provide a connection between blood variables and the Yang-Xu BC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA