Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 127: 155494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471370

RESUMEN

BACKGROUND: Parkinson's disease (PD), a neurodegenerative disorder, is characterized by motor symptoms due to the progressive loss of dopaminergic neurons in the substantia nigra (SN) and striatum (STR), alongside neuroinflammation. Asiaticoside (AS), a primary active component with anti-inflammatory and neuroprotective properties, is derived from Centella asiatica. However, the precise mechanisms through which AS influences PD associated with inflammation are not yet fully understood. PURPOSE: This study aimed to explore the protective mechanism of AS in PD. METHODS: Targets associated with AS and PD were identified from the Swiss Target Prediction, Similarity Ensemble Approach, PharmMapper, and GeneCards database. A protein-protein interaction (PPI) network was constructed to identify potential therapeutic targets. Concurrently, GO and KEGG analyses were performed to predict potential signaling pathways. To validate these mechanisms, the effects of AS on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice were investigated. Furthermore, neuroinflammation and the activation of the NLRP3 inflammasome were assessed to confirm the anti-inflammatory properties of AS. In vitro experiments in BV2 cells were then performed to investigate the mechanisms of AS in PD. Moreover, CETSA, molecular docking, and molecular dynamics simulations (MDs) were performed for further validation. RESULTS: Network pharmacology analysis identified 17 potential targets affected by AS in PD. GO and KEGG analyses suggested the biological roles of these targets, demonstrating that AS interacts with 149 pathways in PD. Notably, the NOD-like receptor signaling pathway was identified as a key pathway mediating AS's effect on PD. In vivo studies demonstrated that AS alleviated motor dysfunction and reduced the loss of dopaminergic neurons in MPTP-induced PD mice. In vitro experiments demonstrated that AS substantially decreased IL-1ß release in BV2 cells, attributing this to the modulation of the NLRP3 signaling pathway. CETSA and molecular docking studies indicated that AS forms a stable complex with NLRP3. MDs suggested that ARG578 played an important role in the formation of the complex. CONCLUSION: In this study, we first predicted that the potential target and pathway of AS's effect on PD could be NLRP3 protein and NOD-like receptor signaling pathway by network pharmacology analysis. Further, we demonstrated that AS could alleviate symptoms of PD induced by MPTP through its interaction with the NLRP3 protein for the first time by in vivo and in vitro experiments. By binding to NLRP3, AS effectively inhibits the assembly and activation of the inflammasome. These findings suggest that AS is a promising inhibitor for PD driven by NLRP3 overactivation.


Asunto(s)
Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Triterpenos , Ratones , Animales , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/metabolismo , Neuroprotección , Enfermedades Neuroinflamatorias , Simulación del Acoplamiento Molecular , Microglía , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas , Antiinflamatorios/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
2.
Phytomedicine ; 127: 155474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471369

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the intestine, which significantly affects patients' quality of life. As a perennial plant with the homology of medicine and food, Panax ginseng is known for its substantial anti-inflammatory effects in various inflammatory disorders. Ginsenosides, the main bioactive compounds of P. ginseng, are recognized for their efficacy in ameliorating inflammation. PURPOSE: Over the past decade, approximately 150 studies have investigated the effects of P. ginseng and ginsenosides on IBD treatment and new issues have arisen. However, there has yet to be a comprehensive review assessing the potential roles of ginsenosides in IBD therapy. METHOD: This manuscript strictly adheres to the PRISMA guidelines, thereby guaranteeing systematic synthesis of data. The research articles referenced were sourced from major scientific databases, including Google Scholar, PubMed, and Web of Science. The search strategy employed keywords such as "ginsenoside", "IBD", "colitis", "UC", "inflammation", "gut microbiota", and "intestinal barrier". For image creation, Figdraw 2.0 was methodically employed. RESULTS: Treatment with various ginsenosides markedly alleviated clinical IBD symptoms. These compounds have been observed to restore intestinal epithelia, modulate cellular immunity, regulate gut microbiota, and suppress inflammatory signaling pathways. CONCLUSION: An increasing body of research supports the potential of ginsenosides in treating IBD. Ginsenosides have emerged as promising therapeutic agents for IBD, attributed to their remarkable efficacy, safety, and absence of side effects. Nevertheless, their limited bioavailability presents a substantial challenge. Thus, efforts to enhance the bioavailability of ginsenosides represent a crucial and promising direction for future IBD research.


Asunto(s)
Ginsenósidos , Enfermedades Inflamatorias del Intestino , Panax , Humanos , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Calidad de Vida , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Inflamación/tratamiento farmacológico
3.
Phytomedicine ; 119: 155024, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37597364

RESUMEN

BACKGROUND: Piper nigrum essential oil (PnEO) possesses pleasant aroma, unique flavor, and various bioactivities; however, its role against colitis remains unclear. PURPOSE: In this study, we investigated the role of PnEO in relieving colitis and explored its potential mechanisms in a mouse model of dextran sulfate sodium (DSS)-induced colitis. METHODS: Initially, we identified and quantified the components of PnEO by gas chromatography-mass spectrometry (GC-MS). Subsequently, we investigated the protective role of PnEO (50 and 200 mg/kg) in DSS-induced colitis in mice by evaluating disease activity index (DAI) scores and colon length, and performing histological analyses. Eyeball blood was collected and cytokines were determined using ELISA kits. The anti-inflammatory mechanisms of PnEO were analyzed by western blot (WB) and immunohistochemistry (IHC). The intestinal barrier function was evaluated according to tight junction (TJ) protein mRNA levels. We used 16S rRNA gene sequencing to analyze the intestinal microflora of mouse cecal contents. RESULTS: Supplementation with PnEO (50 and 200 mg/kg) increased colon length and improved colon histopathology. PnEO regulated inflammatory responses by downregulating TLR4/MAPKs activation, thereby reducing the release of cytokines and mediators. Moreover, it also protected the intestinal barrier through enhancing the expression of claudin-1, claudin-3, occludin, ZO-1, and mucin 2. 16S rRNA gene sequencing revealed that PnEO (200 mg/kg) decreased the abundance of Akkermansia in the gut microbiome. CONCLUSION: PnEO treatment (50 and 200 mg/kg) relieved DSS-induced colitis by inhibiting TLR4/MAPK pathway and protecting intestinal barrier, and high-dose PnEO exhibited better effects. Moreover, PnEO (200 mg/kg) regulated key compositions of the gut microbiome, which indicated that it had therapeutic potential for sustaining gut health to lower the risk of colitis.


Asunto(s)
Colitis , Piper nigrum , Animales , Ratones , Sulfato de Dextran , ARN Ribosómico 16S , Receptor Toll-Like 4 , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Citocinas
4.
Phytochemistry ; 208: 113589, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36669693

RESUMEN

The fragrant flowers of Rosa hugonis Hemsl. Contain abundant valuable rose oil and carotenoids. However, phytochemical investigation of this resource rich in phenolics with neuroprotective activity in vitro has been rarely reported. Purification of the 70% ethanol extracts from the flowers of R. hugonis by various chromatographic methods resulted in the isolation and characterization of five undescribed acylated flavonoid glycosides (Hugonisflavonoid A-E) together with forty known phenolics. The chemical structures of the undescribed compounds were elucidated by extensive analysis of their spectroscopic data and chemical methods. All the isolates were found from R. hugonis for the first time and evaluated for their neuroprotective effects on 6-OHDA induced injury in PC12 cells. Seventeen compounds displayed remarkable protective effects at concentrations of 10 µM. Hugonisflavonoid E can reduce excessive reactive oxygen species and up-regulate mRNA expression levels of superoxide dismutase 1 and catalase. Additionally, hugonisflavonoid E activated the phosphorylated proteins such as PDK1, Akt and GSk-3ß. These findings suggested that R. hugonis could be a potential source for neuroprotective agents.


Asunto(s)
Fármacos Neuroprotectores , Rosa , Ratas , Animales , Antioxidantes/farmacología , Rosa/química , Glucógeno Sintasa Quinasa 3 beta , Flores/química , Extractos Vegetales/química
5.
J Ethnopharmacol ; 302(Pt A): 115865, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36306932

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Centella asiatica (L.) Urb., a potential medicinal plant, is widely used in orient traditional medicine. Its major active constituents include asiaticoside (AS), madecassoside (MS), asiatic acid and madecassic acid. Thereinto, AS is a pentacyclic triterpenoid saponin with a variety of pharmacological effects including antitumor, neuroprotective and wound healing effects. AIM OF THE STUDY: In this review, we summarize the pharmacokinetics, safety and pharmacological properties of AS. MATERIALS AND METHODS: We gathered information about AS from articles published up to 2022 and listed in Google scholar, PubMed, Web of Science, Elsevier, and similar databases. The keywords used in our search included "asiaticoside", "Centella asiatica", "pharmacokinetics", "nerve", "cancer", "skin", etc. RESULTS: AS appeared to degrade through a first-order reaction and had low biotoxicity. However, the pharmacokinetic properties of AS differed according to species. AS is highly blood-brain-barrier permeable without any harmful side effect. It has a variety of pharmacological effects including anti-neural inflammation and anti-cancer properties, as well as protective properties for the skin, cardiovascular system, and pulmonary system. CONCLUSION: This review comprehensively summarized current information regarding the pharmacokinetic and pharmacological properties of AS, and supported the pharmaceutical value of this compound. Future research should focus on improving bioavailability of AS and conducting clinical assessment.


Asunto(s)
Centella , Triterpenos , Extractos Vegetales/farmacología , Triterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA