Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 333, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664694

RESUMEN

BACKGROUND: The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS: In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS: Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.


Asunto(s)
Camellia sinensis , Ritmo Circadiano , Fotosíntesis , Fotosíntesis/genética , Camellia sinensis/genética , Camellia sinensis/fisiología , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Familia de Multigenes , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Fotoperiodo
2.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203827

RESUMEN

The circadian clock refers to the formation of a certain rule in the long-term evolution of an organism, which is an invisible 'clock' in the body of an organism. As one of the largest TF families in higher plants, the MYB transcription factor is involved in plant growth and development. MYB is also inextricably correlated with the circadian rhythm. In this study, the transcriptome data of the tea plant 'Baiyeyihao' were measured at a photoperiod interval of 4 h (24 h). A total of 25,306 unigenes were obtained, including 14,615 unigenes that were annotated across 20 functional categories within the GO classification. Additionally, 10,443 single-gene clusters were annotated to 11 sublevels of metabolic pathways using KEGG. Based on the results of gene annotation and differential gene transcript analysis, 22 genes encoding MYB transcription factors were identified. The G10 group in the phylogenetic tree had 13 members, of which 5 were related to the circadian rhythm, accounting for 39%. The G1, G2, G8, G9, G15, G16, G18, G19, G20, G21 and G23 groups had no members associated with the circadian rhythm. Among the 22 differentially expressed MYB transcription factors, 3 members of LHY, RVE1 and RVE8 were core circadian rhythm genes belonging to the G10, G12 and G10 groups, respectively. Real-time fluorescence quantitative PCR was used to detect and validate the expression of the gene transcripts encoding MYB transcription factors associated with the circadian rhythm.


Asunto(s)
Camellia sinensis , Relojes Circadianos , Humanos , Camellia sinensis/genética , Filogenia , Ritmo Circadiano/genética ,
3.
Plant Physiol Biochem ; 198: 107704, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37086694

RESUMEN

Tea plants have a long cultivation history in the world, and the beverage (tea) made from its leaves is well known in the world. Due to the characteristics of self-incompatibility, long-term natural and artificial hybridization, tea plants have a very complex genetic background, which make the classification of tea plants unclear. Molecular marker, one type of genetic markers, has the advantages of stable inheritance, large amount of information, and high reliability. The development of molecular marker has facilitated the understanding of complex tea germplasm resources. So far, molecular markers had played important roles in the study of the origin and evolution, the preservation and identification of tea germplasms, and the excellent cultivars breeding of tea plants. However, the information is scattered, making it difficult to understand the advance of molecular markers in tea plants. In this paper, we summarized the development process and types of molecular markers in tea plants. In addition, the application advance of these molecular markers in tea plants was reviewed. Perspectives of molecular markers in tea plants were also systematically provided and discussed. The elaboration of molecular markers in this paper should help us to renew understanding of its application in tea plants.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Barajamiento de ADN , Reproducibilidad de los Resultados , Fitomejoramiento , , Evolución Molecular
4.
Protoplasma ; 260(3): 869-884, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36385311

RESUMEN

Tea plant, an important beverage crop, is cultivated worldwide. Lignification can improve the hardness of tea plant, which is of great significance for tea quality. Jasmonates (JAs) and cytokinin are plant hormones that control processes of plant development and secondary metabolite accumulation. Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) is primarily involved in lignin biosynthesis. The effects of exogenous application of JAs and cytokinin on lignin biosynthesis and related HCT gene expression profiles in tea plants are still unclear. In order to investigate the effects of exogenous JAs and cytokinin on lignin accumulation, anatomical structures, and CsHCT gene profiles in tea plants, we treated tea plants with methyl jasmonate (MeJA) and cytokinin (6-BA). MeJA and 6-BA treatments triggered the lignification at 6 and 12 d in tea leaves. The combined treatment resulted in an increase in lignin content at 6 d, which was 1.32 times of that at 0 d for 'Mengshan 9.' The CsHCTs in clade 2 (CsHCT5, CsHCT6, CsHCT7, and CsHCT8) were mainly expressed in leaves. We found that exogenous MeJA and cytokinin might be able to antagonistically regulate tea plant lignin accumulation through the mediation of CsHCT expression. This study revealed that HCTs play potential important roles involved in lignin biosynthesis of tea plant development and hormonal stimuli.


Asunto(s)
Camellia sinensis , Citocininas , Citocininas/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Té/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo
5.
Crit Care ; 23(1): 324, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31639033

RESUMEN

BACKGROUND: Antibiotic-associated diarrhea (AAD) is a risk factor for exacerbating the outcome of critically ill patients. Dysbiosis induced by the exposure to antibiotics reveals the potential therapeutic role of fecal microbiota transplantation (FMT) in these patients. Herein, we aimed to evaluate the safety and potential benefit of rescue FMT for AAD in critically ill patients. METHODS: A series of critically ill patients with AAD received rescue FMT from Chinese fmtBank, from September 2015 to February 2019. Adverse events (AEs) and rescue FMT success which focused on the improvement of abdominal symptoms and post-ICU survival rate during a minimum of 12 weeks follow-up were assessed. RESULTS: Twenty critically ill patients with AAD underwent rescue FMT, and 18 of them were included for analysis. The mean of Acute Physiology and Chronic Health Evaluation (APACHE) II scores at intensive care unit (ICU) admission was 21.7 ± 8.3 (range 11-37). Thirteen patients received FMT through nasojejunal tube, four through gastroscopy, and one through enema. Patients were treated with four (4.2 ± 2.1, range 2-9) types of antibiotics before and during the onset of AAD. 38.9% (7/18) of patients had FMT-related AEs during follow-up, including increased diarrhea frequency, abdominal pain, increased serum amylase, and fever. Eight deaths unrelated to FMT occurred during follow-up. One hundred percent (2/2) of abdominal pain, 86.7% (13/15) of diarrhea, 69.2% (9/13) of abdominal distention, and 50% (1/2) of hematochezia were improved after FMT. 44.4% (8/18) of patients recovered from abdominal symptoms without recurrence and survived for a minimum of 12 weeks after being discharged from ICU. CONCLUSION: In this case series studying the use of FMT in critically ill patients with AAD, good clinical outcomes without infectious complications were observed. These findings could potentially encourage researchers to set up new clinical trials that will provide more insight into the potential benefit and safety of the procedure in the ICU. TRIAL REGISTRATION: ClinicalTrials.gov, Number NCT03895593 . Registered 29 March 2019 (retrospectively registered).


Asunto(s)
Antibacterianos/efectos adversos , Diarrea/terapia , Trasplante de Microbiota Fecal/métodos , APACHE , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/uso terapéutico , Niño , Preescolar , China , Enfermedad Crítica/terapia , Diarrea/etiología , Diarrea/fisiopatología , Disbiosis/terapia , Trasplante de Microbiota Fecal/tendencias , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento
6.
Onco Targets Ther ; 9: 1997-2005, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27103825

RESUMEN

As typical clock gene machinery, period (PER1, PER2, and PER3), cryptochrome (CRY1 and CRY2), and timeless (TIM), could control proliferation, cellular metabolism, and many key functions, such as recognition and repair of DNA damage, dysfunction of the circadian clock could result in tumorigenesis of colorectal cancer (CRC). In this study, the expression levels of PER1, PER2, and PER3, as well as CRY1, CRY2, and TIM in the tumor tissue and apparently healthy mucosa from CRC patients were examined and compared via quantitative real-time polymerase chain reaction. Compared with the healthy mucosa from CRC patients, expression levels of PER1, PER2, PER3, and CRY2 in their tumor tissue are much lower, while TIM level was much enhanced. There was no significant difference in the CRY1 expression level. High levels of TIM mRNA were much prevalent in the tumor mucosa with proximal lymph nodes. CRC patients with lower expression of PER1 and PER3 in the tumor tissue showed significantly poorer survival rates. The abnormal expression levels of PER and TIM genes in CRC tissue could be related to the genesis process of the tumor, influencing host-tumor interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA