Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 129: 155636, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640860

RESUMEN

BACKGROUD: Chronic fatigue syndrome (CFS) severely impact patients' quality of life and lacks well-acknowledged drug therapy. Sijunzi decoction (SJZD), a classical Chinese herbal formula, has been widely used for spleen deficiency syndrome like fatigue in China. However, there is a lack of evidence on the efficacy of SJZD in treating CFS. PURPOSE: To evaluate the efficacy and safety of SJZD for CFS. STUDY DESIGN: A multi-center, double-blinded, randomized controlled trial. METHODS: Participants with definite diagnoses of CFS and spleen deficiency syndrome were randomly assigned in 1:1 ratio to receive SJZD or placebo granules for 2 months. The primary outcome was the change of Chalder fatigue questionnaire (CFQ) scoring after treatment. Other outcomes included changes in short form-36 physical function (SF36-PF) score, spleen deficiency scale score, Euroqol Questionnaire-Visual Analogue Scale (ED-VAS) score, and clinical global impression (CGI) evaluating by corresponding questionnaires. Fecal metagenome sequencing was conducted to explore the potential mechanism of SJZD effect. RESULTS: From June 2020 to July 2021, 105 of 127 participants completed the study at four hospitals in China. After a 2-month treatment, intention-to-treat (ITT) analysis found participants who received SJZD had larger reduction than placebo control (mean change 6.65 [standard deviation (SD) 6.11] points vs. 5.31 [SD 5.19] points; difference 1.34, 95 % confidence interval [CI] -0.65 to 3.33). Per-protocol (PP) analysis reported confirmative results with a significant difference between SJZD and placebo groups (2.24, 95 % CI 0.10 to 4.39). SJZD also significantly improved overall health status compared with placebo in per-protocol population (p = 0.009). No significant difference was found between groups in changes of SF36-PF, spleen deficiency scale scoring, and CGI. Fecal metagenome sequencing and correlation analyses indicated that the beneficial effect of SJZD may be related to the abundance change of Pediococcus acidilactici. No serious adverse event or abnormal laboratory test was found during the whole study. CONCLUSION: Our results indicated that SJZD can improve fatigue symptom and overall health status in patients with CFS under good medication adherence. Potential therapeutic effects may be related to the regulation of gut microbiota. Large-scale trials with longer intervention period are encouraged to further support SJZD's application. CLINICAL TRIAL REGISTRATION: (ID, ISRCTN23930966, URL = https://www.isrctn.com/ISRCTN23930966).


Asunto(s)
Medicamentos Herbarios Chinos , Síndrome de Fatiga Crónica , Microbioma Gastrointestinal , Humanos , Síndrome de Fatiga Crónica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Femenino , Método Doble Ciego , Masculino , Adulto , Persona de Mediana Edad , Calidad de Vida , Fatiga/tratamiento farmacológico , Resultado del Tratamiento , Encuestas y Cuestionarios
2.
Phytomedicine ; 123: 155173, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37976695

RESUMEN

BACKGROUND: ShuGan-QieZhi capsule (SGQZC) is a traditional Chinese preparation used to treat hyperlipidemia and obesity, even non-alcoholic fatty liver disease (NAFLD). However, its therapeutic effects, main bioactive ingredients, as well as potential mechanisms for NAFLD are still unclear. PURPOSE: To investigate the pharmacological effect, main active ingredients, and mechanisms of SGQZC against high-fat diet (HFD)-induced NAFLD in mice. METHODS: NAFLD models were established by feeding C57BL/6 J mice an HFD for 24 weeks. From the 12th week, HFD-fed mice received daily gavage of either SGQZC or silibinin for 12 weeks. Hepatic hypertrophy parameters, along with hepatic and systemic lipid metabolism changes in NAFLD mice, were assessed. Oil red O and histopathological staining techniques determined lipid accumulation and liver injury severity. qRT-PCR analysis measured the expression of genes tied to liver lipid metabolism and inflammation. HPLC-MS/MS identified the primary components of SGQZC in the serum. Human normal hepatocytes (LO2) and hepatic stellate cells (LX-2) were used to screen SGQZC's bioactive ingredients. Network pharmacological analysis, transcriptomics, and western blotting delved into SGQZC's synergistic mechanisms against NAFLD. RESULTS: SGQZC ameliorated abnormal lipid metabolism and liver hypertrophy in mice with HFD-induced NAFLD, consequently reducing hepatic lipid accumulation, inflammatory cell infiltration, and liver impairment. Eight crucial components of SGQZC were detected in serum using HPLC-MS/MS and were found to effectively attenuate lipid accumulation and inflammation in liver cells. Further investigation indicated that SGQZC modulates MAPK pathway and AKT/NF-κB pathway, subsequently improving lipid metabolism and inflammation. CONCLUSION: SGQZC alleviates NAFLD by synergistically modulating the MAPK-mediated lipid metabolism and inhibiting AKT/NF-κB pathways-mediated inflammation. Our findings reveal the enormous potential of SGQZC for the treatment of NAFLD, providing a possible new clinical therapeutic strategy.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Espectrometría de Masas en Tándem , Ratones Endogámicos C57BL , Hígado , Inflamación/tratamiento farmacológico , Metabolismo de los Lípidos , Dieta Alta en Grasa/efectos adversos , Lípidos , Hipertrofia/patología
3.
Front Pharmacol ; 14: 1123476, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998608

RESUMEN

Introduction: Pharbitidis Semen (PS) has been widely used in traditional Chinese medicine to treat several diseases such as nephritis. PS is usually stir-fried to enhance its therapeutic efficacy before use in clinical practice. However, the changes in phenolic acids during stir-frying and the mechanisms of their therapeutic effects on nephritis are still unclear. Methods: Here, we studied the processing-induced chemical changes and elucidated the mechanism of PS in the treatment of nephritis. We determined the levels of the 7 phenolic acids in raw PS (RPS) and stir-fried PS (SPS) using high-performance liquid chromatography, analyzed the dynamic compositional changes during stir-frying, and used network analysis and molecular docking to predict and verify compound targets and pathways corresponding to nephritis. Results: The dynamic changes in the 7 phenolic acids in PS during stir-frying are suggestive of a transesterification reaction. Pathway analysis revealed that the targets of nephritis were mainly enriched in the AGE-RAGE, hypoxia-inducible factor-1, interleukin-17, and tumor necrosis factor signaling pathways among others. Molecular docking results showed that the 7 phenolic acids had good binding ability with the key nephritic targets. Discussion: The potential pharmaceutical basis, targets, and mechanisms of PS in treating nephritis were explored. Our findings provide a scientific basis for the clinical use of PS in treating nephritis.

4.
J Immunol Res ; 2023: 4319551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844438

RESUMEN

Objective: This study is aimed at exploring the effect of Qinghua Jianpi Recipe on preventing colon polyp recurrence and inhibiting the progress of "inflammatory cancer transformation." And another goal is to explore the changes of intestinal flora structure and intestinal inflammatory (immune) microenvironment of mice with colon polyps treated by Qinghua Jianpi Recipe and to clarify its mechanism. Methods: Clinical trials were conducted to confirm the therapeutic effect of Qinghua Jianpi Recipe on patients with inflammatory bowel disease. The inhibitory effect of Qinghua Jianpi Recipe on "inflammatory cancer transformation" of colon cancer was confirmed by an adenoma canceration mouse model. Histopathological examination was used to evaluate the effects of Qinghua Jianpi Recipe on intestinal inflammatory state, adenoma number, and pathological changes of adenoma model mice. The changes of inflammatory indexes in intestinal tissue were tested by ELISA. Intestinal flora was detected by 16S rRNA high-throughput sequencing. Short-chain fatty acid metabolism in the intestine was analyzed by targeted metabolomics. Network pharmacology analysis of possible mechanism of Qinghua Jianpi Recipe on colorectal cancer was performed. Western blot was used to detect the protein expression of the related signaling pathways. Results: Qinghua Jianpi Recipe can significantly improve intestinal inflammation status and function in patients with inflammatory bowel disease. Qinghua Jianpi Recipe could significantly improve the intestinal inflammatory activity and pathological damage of adenoma model mice and reduce the number of adenoma. Qinghua Jianpi Recipe significantly increased the levels of Peptostreptococcales_Tissierellales, NK4A214_group, Romboutsia, and other intestinal flora after intervention. Meanwhile, the treatment group of Qinghua Jianpi Recipe could reverse the changes of short-chain fatty acids. Network pharmacology analysis and experimental studies showed that Qinghua Jianpi Recipe inhibited the "inflammatory cancer transformation" of colon cancer by regulating intestinal barrier function-related proteins, inflammatory and immune-related signaling pathways, and free fatty acid receptor 2 (FFAR2). Conclusion: Qinghua Jianpi Recipe can improve the intestinal inflammatory activity and pathological damage of patient and adenoma cancer model mice. And its mechanism is related to the regulation of intestinal flora structure and abundance, short-chain fatty acid metabolism, intestinal barrier function, and inflammatory pathways.


Asunto(s)
Adenoma , Neoplasias del Colon , Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , ARN Ribosómico 16S , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias del Colon/tratamiento farmacológico , Adenoma/tratamiento farmacológico , Microambiente Tumoral
5.
Biomed Chromatogr ; 37(1): e5506, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36093881

RESUMEN

Ganoderma lucidum is a medicinal fungus that has been widely used in China and many Asian countries for thousands of years. This once rare macrofungus has now been artificially cultivated in a number of regions in China. However, detailed knowledge of its composition across different geographical origins is still lacking, as are analytical methods for comprehensive profiling of the diverse phytochemicals contained in G. lucidum. In this work, an on-demand strategy based on high-resolution MS and molecular networking is applied for natural product characterization, which led to the identification of 84 constituents in G. lucidum. Moreover, multivariate analysis, including hierarchical cluster analysis and orthogonal partial least squares-discriminant analysis, was used to analyze the (dis)similarity of the G. lucidum samples collected from the three main production areas (i.e., Jilin, Henan and Shandong Province). The results revealed a significant variation in the chemical composition of samples from different provinces. Marker constituents corresponding to the differentiation were then screened in terms of the variable importance in projection value, P-value and fold change. A total of 24 constituents were identified as geoherbalism markers, such as ganoderenic acid A for Henan, ganolucidic acid B for Jilin and ganodernoid D for Shandong. This proof-of-concept application demonstrates that combining MS molecular networking with meticulous multivariate analysis can provide a sensitive and comprehensive analytical approach for the quality assessment of traditional Chinese medicine ingredients. This study also suggests that the bioactivity and efficacy from different origins should be further evaluated considering the large difference in chemical compositions.


Asunto(s)
Reishi , Reishi/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Análisis Multivariante , Medicina Tradicional China
6.
Artículo en Inglés | MEDLINE | ID: mdl-34992665

RESUMEN

OBJECTIVE: We analyzed the efficacy and pharmacological mechanisms of action of Zhen Ren Yang Zang decoction (ZRYZD) on ulcerative colitis (UC) using meta-analysis and network pharmacology. METHODS: The major databases were searched for randomized controlled trials of ZRYZD for the treatment of UC. Meta-analysis of the efficacy of ZRYZD on UC was conducted using RevMan software. Active compounds and target genes were acquired using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. UC-related genes were searched using the GeneCards database. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using RGUI. A compound-target network was constructed using Cytoscape software, and a protein-protein interaction network was constructed using the STRING database. Molecular docking simulations of the macromolecular protein targets and their corresponding ligand compounds were performed using the AutoDock tool and AutoDock Vina software. RESULTS: Meta-analysis revealed that the total effective rate and recovery rate of clinical efficacy were significantly higher in the experimental group than those of the control group. The screening identified 169 active compounds and 277 active target genes for ZRYZD. The 277 active target genes were compared with the 4,798 UC-related genes. This identified 187 active target genes of ZRYZD for UC that correlated with 138 active compounds. GO functional enrichment and KEGG pathway enrichment analyses were performed, and compound-target and protein-protein interaction networks were constructed. The key compounds and key target proteins were then selected. Finally, target protein binding with the corresponding compound was analyzed using molecular docking. CONCLUSION: Our findings demonstrate the effectiveness and safety of ZRYZD for the treatment of UC and provide insight into the underlying pharmacological mechanisms of action. Furthermore, key compounds were identified, laying the foundation for future studies on ZRYZD for the treatment of UC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA