Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 8(6): e65154, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23785408

RESUMEN

Diabetes can exacerbate seizures and worsen seizure-related brain damage. In the present study, we aimed to determine whether the standard antiepileptic drug pregabalin (PGB) protects against pilocarpine-induced seizures and excitotoxicity in diabetes. Adult male Sprague-Dawley rats were divided into either a streptozotocin (STZ)-induced diabetes group or a normal saline (NS) group. Both groups were further divided into subgroups that were treated intravenously with either PGB (15 mg/kg) or a vehicle; all groups were treated with subcutaneous pilocarpine (60 mg/kg) to induce seizures. To evaluate spontaneous recurrent seizures (SRS), PGB-pretreated rats were fed rat chow containing oral PGB (450 mg) for 28 consecutive days; vehicle-pretreated rats were fed regular chow. SRS frequency was monitored for 2 weeks from post-status epilepticus day 15. We evaluated both acute neuronal loss and chronic mossy fiber sprouting in the CA3 area. In addition, we performed patch clamp recordings to study evoked excitatory postsynaptic currents (eEPSCs) in hippocampal CA1 neurons for both vehicle-treated rats with SRS. Finally, we used an RNA interference knockdown method for Kir6.2 in a hippocampal cell line to evaluate PGB's effects in the presence of high-dose ATP. We found that compared to vehicle-treated rats, PGB-treated rats showed less severe acute seizure activity, reduced acute neuronal loss, and chronic mossy fiber sprouting. In the vehicle-treated STZ rats, eEPSC amplitude was significantly lower after PGB administration, but glibenclamide reversed this effect. The RNA interference study confirmed that PGB could counteract the ATP-sensitive potassium channel (KATP)-closing effect of high-dose ATP. By opening KATP, PGB protects against neuronal excitotoxicity, and is therefore a potential antiepileptogenic in diabetes. These findings might help develop a clinical algorithm for treating patients with epilepsy and comorbid metabolic disorders.


Asunto(s)
Anticonvulsivantes/farmacología , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/patología , Convulsiones/metabolismo , Convulsiones/patología , Ácido gamma-Aminobutírico/análogos & derivados , Adenosina Trifosfato/metabolismo , Animales , Anticonvulsivantes/administración & dosificación , Glucemia , Línea Celular , Neuropatías Diabéticas/inducido químicamente , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/mortalidad , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Gliburida/administración & dosificación , Gliburida/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Canales KATP/metabolismo , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pilocarpina/efectos adversos , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Pregabalina , Ratas , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/mortalidad , Estreptozocina/efectos adversos , Ácido gamma-Aminobutírico/administración & dosificación , Ácido gamma-Aminobutírico/farmacología
2.
Neurotox Res ; 17(4): 305-16, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19728004

RESUMEN

Diabetic hyperglycemia is associated with seizure severity and may aggravate brain damage after status epilepticus. Our earlier studies suggest the involvement of ATP-sensitive potassium channels (K(ATP)) in glucose-related neuroexcitability. We aimed to determine whether K(ATP) agonist protects against status epilepticus-induced brain damage. Adult male Sprague-Dawley rats were divided into two groups: the streptozotocin (STZ)-induced diabetes (STZ) group and the normal saline (NS) group. Both groups were treated with either diazoxide (15 mg/kg, i.v.) (STZ + DZX, NS + DZX) or vehicle (STZ + V, NS + V) before lithium-pilocarpine-induced status epilepticus. We evaluated seizure susceptibility, severity, and mortality. The rats underwent Morris water-maze tests and hippocampal histopathology analyses 24 h post-status epilepticus. A multi-electrode recording system was used to study field excitatory postsynaptic synaptic potentials (fEPSP). RNA interference (RNAi) to knockdown Kir 6.2 in a hippocampal cell line was used to evaluate the effect of diazoxide in the presence of high concentration of ATP. Seizures were less severe (P < 0.01), post-status epilepticus learning and memory were better (P < 0.05), and neuron loss in the hippocampal CA3 area was lower (P < 0.05) in the STZ + DZX than the STZ + V group. In contrast, seizure severity, post-status epilepticus learning and memory, and hippocampal CA3 neuron loss were comparable in the NS + DZX and NS + V groups. fEPSP was lower in the STZ + DZX but not in the NS + DZX group. The RNAi study confirmed that diazoxide, with its K(ATP)-opening effects, could counteract the K(ATP)-closing effect by high dose ATP. We conclude that, by opening K(ATP), diazoxide protects against status epilepticus-induced neuron damage during diabetic hyperglycemia.


Asunto(s)
Diazóxido/uso terapéutico , Neuronas/efectos de los fármacos , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/patología , Vasodilatadores/uso terapéutico , Adenosina Trifosfato/farmacología , Análisis de Varianza , Animales , Glucemia/efectos de los fármacos , Línea Celular Transformada , Diabetes Mellitus Experimental/complicaciones , Diazóxido/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/patología , Etiquetado Corte-Fin in Situ/métodos , Técnicas In Vitro , Cloruro de Litio , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/inducido químicamente , Transfección/métodos , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA