RESUMEN
Corydalis decumbens, a Traditional Chinese Medicine, has been widely used for the alternative and/or complementary therapy of hypertension, arrhythmias rheumatoid arthritis, sciatica, stroke, hemiplegia, paraplegia, and vascular embolism. The aim of this study was to determinate the potential effects of Corydalis decumbens on the five cytochrome P450 (CYP) enzyme activities (CYP1A2, CYP3A4, CYP2C9, CYP2C19, and CYP2D6) by cocktail approach. To evaluate whether concurrent use of Corydalis decumbens interferes with the effect of several prescription drugs, saline (control group) or Corydalis decumbens (XTW group) were administrated via gavage for 7 successive days. A probe cocktail solution (phenacetin, omeprazole, metoprolol, tolbutamide, and midazolam) was given 24 h after the last dose of saline or Corydalis decumbens. A specific and sensitive UHPLC-MS/MS method was validated for the determination of five substrates and their metabolites in control group and XTW group. Our results indicated that Corydalis decumbens could have inductive effects of CYP2C19 and inhibit the activities of CYP1A2 and CYP3A4. However, Corydalis decumbens had no significant influence on CYP2C9 and CYP2D6. The herb-drug interaction should require more attention by careful monitoring and appropriate drug dosing adjustments to the concurrent use of western medications which were metabolized by CYP1A2, CYP2C19, and CYP3A4 in human-Corydalis decumbens, Cytochrome P450, Cocktail, Pharmacokinetics, herb-drug interactions.
Asunto(s)
Corydalis/química , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Medicamentos Herbarios Chinos/farmacología , Animales , Interacciones de Hierba-Droga/fisiología , Masculino , Midazolam/farmacología , Omeprazol/farmacología , Fenacetina/farmacología , Ratas , Ratas Sprague-Dawley , Tolbutamida/farmacologíaRESUMEN
Cytochrome P450 2C9 (CYP2C9), one of the most important phase I drug metabolizing enzymes, could catalyze the reactions that convert diclofenanc into diclofenac 4'-hydroxylation. Evaluation of the inhibitory effects of compounds on CYP2C9 is clinically important because inhibition of CYP2C9 could result in serious drug-drug interactions. The objective of this work was to investigate the effects of curcumin on CYP2C9 in human and cytochrome P450 2C11 (CYP2C11) in rat liver microsomes. The results showed that curcumin inhibited CYP2C9 activity (10 µmol L(-1) diclofenac) with half-maximal inhibition or a half-maximal inhibitory concentration (IC50) of 15.25 µmol L(-1) and Ki = 4.473 µmol L(-1) in human liver microsomes. Curcumin's mode of action on CYP2C9 activity was noncompetitive for the substrate diclofenanc and uncompetitive for the cofactor NADPH. In contrast to its potent inhibition of CYP2C9 in human, diclofenanc had lesser effects on CYP2C11 in rat, with an IC50 ≥100 µmol L(-1). The observations imply that curcumin has the inhibitory effects on CYP2C9 activity in human. These in vitro findings suggest that more attention should be paid to special clinical caution when intake of curcumin combined with other drugs in treatment.