RESUMEN
The dramatic increase in obesity is putting people under increasing pressure. Lipase inhibitors, as a kind of effective anti-obesity drug, have attracted more and more researchers' attention in recent years because of their advantages of acting on the intestinal tract and having no side effects on the central nervous system. In this study, lipase inhibitor Fu Brick Theophylline (FBT) was screened based on enzyme molecular dynamics, and the inhibition mechanism of lipase inhibitors on obesity was analyzed and discussed at the cellular level and animal model level. We found that FBT had high inhibition effects of lipase with an IC50 of 1.02~0.03 µg/mL. Firstly, the laboratory used 3T3-L1 proadipocytes as models, flow cytometry was used to detect the effects of FBT on the cycle, apoptosis and intracellular ROS activity of proadipocytes. To study the contents of triglyceride, total cholesterol, related metabolites and related gene and protein expression in adipocytes. The results showed that FBT could reduce ROS production and inflammatory factor mRNA expression during cell differentiation. Secondly, by establishing the animal model of high-fat feed ob nutritional obese mice, the morphological observation and gene expression analysis of body weight, fat rate, adipocyte and hepatocyte metabolism of FBT obese mice were further discussed. It was proven that FBT can effectively reduce the degree of fatty liver, prevent liver fibrosis and fat accumulation, and improve the damage of mitochondrial membrane structure. This study provides a theoretical basis for the screening and clinical treatment of lipase inhibitors.
Asunto(s)
Lipasa , Teofilina , Células 3T3-L1 , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Humanos , Ratones , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Especies Reactivas de Oxígeno , Té/químicaRESUMEN
In this study, the conditions of extraction of loquat flowers polyphenolics were optimized through response surface methodology (RSM). Proper extraction conditions were: solid to liquid ratio 1 g per 50 mL and ethanol concentration 50% at 61°C for 9 min. Furthermore, the antioxidant and anti-polyphenol oxidase (PPO) activity of purified total polyphenolics (PTP) were investigated. PTP displayed strong antioxidant activity with IC50 values of 126.3 ± 8.9, 162.4 ± 6.3 and 94.97 mg ascorbic acid equivalent/g dry weight (mg AAE/d.w.) for ABTS, DPPH, and FRAP assays. In addition, PTP has a substantial inhibitory activity on PPO (IC50 = 115 ± 9.2 µg/mL). From the kinetics analysis, it was proved to be a reversible and mixed-type inhibitor of PPO with KI and KIS values of 76.77 µg/mL and 227.86 µg/mL, respectively. Further, the molecular mechanism underlying the inhibition of PPO by PTP was investigated by molecular docking techniques. The results showed that PTP units could form interaction with the catalytic pocket of PPO through the interaction with amino acid residues in the enzyme active center. The antioxidant activities of PTP together with its effect on PPO activity provide a strong starting point for their practical usage in the food industry.