Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
ACS Biomater Sci Eng ; 9(6): 3670-3679, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37184981

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease that mainly affects joints, and it can lead to disability and damage to vital organs if not diagnosed and treated in time. However, all current therapeutic agents for RA have limitations such as high dose, severe side effects, long-term use, and unsatisfactory therapeutic effects. The long-term use and dose escalation of methotrexate (MTX) may cause mild and severe side effects. To overcome the limitations, it is critical to target drug delivery to the inflamed joints. In this work, we constructed a folic acid-targeted and cell-mimetic nanodrug, MTX-loaded mesoporous silica composite nanoplatform (MMPRF), which can regulate drug release under ultrasound (US) and microbubble (MB) mediation. The targeted delivery and drug therapy were investigated through in vitro RAW264.7 cell experiments and in vivo collagen-induced arthritis animal experiments. The result showed that the targeting ability to the joints of MMPRF was strong and was more significant after US and MB mediation, which can potently reduce joint swelling, bone erosion, and inflammation in joints. This work indicated that the US- and MB-mediated MMPRF not only would be a promising method for synergistic targeted treatment of RA but also may show high potential for serving as a nanomedicine for many other biomedical fields.


Asunto(s)
Artritis Reumatoide , Nanopartículas , Animales , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inducido químicamente , Sistemas de Liberación de Medicamentos , Metotrexato/efectos adversos , Microburbujas , Nanopartículas/uso terapéutico
2.
J Ethnopharmacol ; 309: 116345, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-36906155

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Weierning tablet (WEN) is a traditional Chinese patent medicine widely used in clinical for chronic atrophic gastritis (CAG) therapy for years. However, the underlying mechanisms of WEN on anti-CAG are still unveiled. AIM OF THE STUDY: The present study aimed to elucidate the characteristic function of WEN on anti-CAG and to illuminate its potential mechanism. METHODS: The CAG model was established by gavage rats with a modeling solution (consisting of 2% sodium salicylate and 30% alcohol) with irregular diets and free access to 0.1% ammonia solution for two months on end. An enzyme-linked immunosorbent assay was used to measure the serum levels of gastrin, pepsinogen, and inflammatory cytokines. qRT-PCR was applied to measure mRNA expressions of IL-6, IL-18, IL-10, TNF-α, and γ-IFN in gastric tissue. Pathological changes and the ultrastructure of gastric mucosa were examined by hematoxylin and eosin staining and transmission electron microscopy, respectively. AB-PAS staining was applied to observe the intestinal metaplasia of gastric mucosa. Immunohistochemistry and Western blot were used to measure the expression levels of mitochondria apoptosis-related proteins and Hedgehog pathway-related proteins in gastric tissues. Expressions of Cdx2 and Muc2 protein were determined by immunofluorescent staining. RESULTS: WEN could dose-dependently lower the serum level of IL-1ß and the mRNA expressions of IL-6, IL-8, IL-10, TNF-α, and γ-IFN in gastric tissue. Also, WEN significantly alleviated the collagen deposition in gastric submucosa, regulated the expressions of Bax, Cleaved-caspase9, Bcl2, and Cytochrome c to reduce the apoptosis of gastric mucosa epithelial cells, and maintained the integrity of the gastric mucosal barrier. Moreover, WEN could reduce protein expressions of Cdx2, Muc2, Shh, Gli1, and Smo, and reverse intestinal metaplasia of gastric mucosa to block the progress of CAG. CONCLUSION: This study demonstrated a positive effect of WEN on improving CAG and reverse intestinal metaplasia. These functions were related to the suppression of gastric mucosal cells' apoptosis and the inhibition of Hedgehog pathways' activation.


Asunto(s)
Gastritis Atrófica , Ratas , Animales , Gastritis Atrófica/metabolismo , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteínas Hedgehog/metabolismo , Mucosa Gástrica/patología , Metaplasia/metabolismo , Metaplasia/patología , ARN Mensajero/metabolismo
3.
J Immunol Res ; 2022: 2619781, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178457

RESUMEN

Hepatocellular carcinoma (HCC) is an often-fatal malignant tumor with high lethality. Despite advances and significant efficacy in monotherapy, cancer therapy continues to pose several challenges. Novel combination regimens are an emerging strategy for anti-HCC and have demonstrated to be effective. Here, we propose a potential combination for HCC treatment named arsenic trioxide cooperate cryptotanshinone (ACCS). A remarkable synergistic therapeutic effect has been achieved compared with drugs alone in both in vivo and in vitro experiments. Mechanism study indicated that ACCS exerts its therapeutic actions by regulating macrophage-related immunity and glycolysis. ACCS potentiates the polarization of M1 macrophages and elevates the proportion of M1/M2 to remodel tumor immunity. Further molecular mechanism study revealed that ACCS intensifies the glucose utilization and glycolysis in the macrophage by increasing the phosphorylation of AMPK to activating the AMPK singling pathway. In conclusion, ACCS is a highly potential combination regimen for HCC treatment. The therapeutic potential of ACCS as a candidate option for anticancer drugs in restoring the balance of immunity and metabolism deserves further investigation.


Asunto(s)
Antineoplásicos/uso terapéutico , Trióxido de Arsénico/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Macrófagos/metabolismo , Fenantrenos/uso terapéutico , Animales , Diferenciación Celular , Citocinas/metabolismo , Combinación de Medicamentos , Sinergismo Farmacológico , Glucólisis , Humanos , Inmunidad Innata , Inmunomodulación , Activación de Macrófagos , Ratones , Ratones Endogámicos BALB C , Células TH1/inmunología
4.
Zhongguo Zhong Yao Za Zhi ; 46(7): 1795-1802, 2021 Apr.
Artículo en Chino | MEDLINE | ID: mdl-33982484

RESUMEN

This article aims to investigate the ameliorative effect of Linderae Radix ethanol extract on hyperlipidemia rats induced by high-fat diet and to explore its possible mechanism from the perspective of reverse cholesterol transport(RCT). SD rats were divided into normal group, model group, atorvastatin group, Linderae Radix ethanol extract(LREE) of high, medium, low dose groups. Except for the normal group, the other groups were fed with a high-fat diet to establish hyperlipidemia rat models; the normal group and the model group were given pure water, while each administration group was given corresponding drugs by gavage once a day for five weeks. Serum total cholesterol(TC), triglyceride(TG), high density lipoprotein-cholesterol(HDL-c), low density lipoprotein-cholesterol(LDL-c), alanine aminotransferase(ALT), and aspartate aminotransferase(AST) levels were measured by automatic blood biochemistry analyzer; the contents of TC, TG, total bile acid(TBA) in liver and TC and TBA in feces of rats were detected by enzyme colorimetry. HE staining was used to observe the liver tissue lesions; immunohistochemistry was used to detect the expression of ATP-binding cassette G8(ABCG8) in small intestine; Western blot and immunohistochemistry were used to detect the expression of peroxisome proliferator-activated receptor gamma/aerfa(PPARγ/α), liver X receptor-α(LXRα), ATP-binding cassette A1(ABCA1) pathway protein and scavenger receptor class B type Ⅰ(SR-BⅠ) in liver. The results showed that LREE could effectively reduce serum and liver TC, TG levels, serum LDL-c levels and AST activity, and increase HDL-c levels, but did not significant improve ALT activity and liver index; HE staining results showed that LREE could reduce liver lipid deposition and inflammatory cell infiltration. In addition, LREE also increased the contents of fecal TC and TBA, and up-regulated the protein expressions of ABCG8 in small intestine and PPARγ/α, SR-BⅠ, LXRα, and ABCA1 in liver. LREE served as a positive role on hyperlipidemia model rats induced by high-fat diet, which might be related to the regulation of RCT, the promotion of the conversion of cholesterol to the liver and bile acids, and the intestinal excretion of cholesterol and bile acids. RCT regulation might be a potential mechanism of LREE against hyperlipidemia.


Asunto(s)
Hiperlipidemias , Animales , Transporte Biológico , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hígado/metabolismo , Ratas , Ratas Sprague-Dawley , Triglicéridos/metabolismo
5.
J Mater Chem B ; 8(24): 5245-5256, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32432638

RESUMEN

Rheumatoid arthritis (RA) can lead to joint destruction and deformity, which is a significant cause of the loss of the young and middle-aged labor force. However, the treatment of RA is still filled with challenges. Though dexamethasone, one of the glucocorticoids, is commonly used in the treatment of RA, its clinical use is limited because of the required high-dose and long-term use, unsatisfactory therapeutic effects, and various side-effects. Ultrasound-targeted microbubble destruction (UTMD) can augment the ultrasonic cavitation effects and trigger drug release from targeted nanocarriers in the synovial cavity, which makes it a more effective synergistic treatment strategy for RA. In this work, we aim to utilize the UTMD effect to augment the synergistic therapy of RA by using polyethylene glycol (PEG)-modified folate (FA)-conjugated liposomes (LPs) loaded with dexamethasone sodium phosphate (DexSP) (DexSP@LPs-PEG-FA). The UTMD-mediated DexSP@LPs-PEG-FA for targeted delivery of DexSP including a synergistic ultrasonic cavitation effect and drug therapy were investigated through in vitro RAW264.7 cell experiments and in vivo collagen-induced arthritis SD rat model animal experiments. The results show the DexSP release from targeted liposomes was improved under the UTMD effect. Likewise, the folate-conjugated liposomes displayed targeting association to RAW264.7 cells. Together with the application of ultrasound and microbubbles, liposomes-delivered DexSP potently reduced joints swelling, bone erosion, and inflammation in both joints and serum with a low dose. These results demonstrated that UTMD-mediated folate-conjugated liposomes are not only a promising method for targeted synergistic treatment of RA but also may show high potential for serving as nanomedicines for many other biomedical fields.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Dexametasona/análogos & derivados , Ácido Fólico/análogos & derivados , Liposomas/uso terapéutico , Polietilenglicoles/uso terapéutico , Ondas Ultrasónicas , Animales , Células Cultivadas , Dexametasona/química , Dexametasona/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Ácido Fólico/química , Ácido Fólico/uso terapéutico , Liposomas/química , Ratones , Estructura Molecular , Tamaño de la Partícula , Polietilenglicoles/química , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie
6.
ACS Appl Mater Interfaces ; 12(12): 13698-13708, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32129070

RESUMEN

Recent emerged metal-organic frameworks (MOFs), as superior drug carriers, provide novel strategies to combat pathogenic bacterial infections. Although various antibacterial metal ions can be easily introduced in MOFs for chemical bacterial ablation, such a single-model bactericidal method suffers from high-dose use, limited antibacterial efficiency, and slow sterilization rate. Hence, developing a dual bactericidal system is urgently required. Herein, we report an MOF/Ag-derived nanocomposite with efficient metal-ion-releasing capability and robust photo-to-thermal conversion effect for synergistic sterilization. The MOF-derived nanocarbon consisting of metallic zinc and a graphitic-like carbon framework is first synthesized, and then Ag nanoparticles (AgNPs) are evenly introduced via the displacement reaction between Zn and Ag+. Upon near-infrared irradiation, the fabricated nanoagents can generate massive heat to destroy bacterial membranes. Meanwhile, abundant Zn2+ and Ag+ ions are released to make chemical damage to bacterial intracellular substances. Systematic antibacterial experiments reveal that such dual-antibacterial effort can endow the nanoagents with nearly 100% bactericidal ratio for highly concentrated bacteria at a very low dosage (0.16 mg/mL). Furthermore, the nanoagents exhibit less cytotoxicity, which provides potential possibilities for the applications in the biological field. In vivo assessment indicates that the nanocomposites can realize rapid and safe wound sterilization and are expected to be an alternative to antibiotics. Overall, we present an easily fabricated structure-engineered nanocomposite with chemical and photothermal effects for broad-spectrum bacterial sterilization.


Asunto(s)
Infecciones Bacterianas/tratamiento farmacológico , Nanopartículas del Metal/química , Estructuras Metalorgánicas/química , Nanocompuestos/química , Infecciones Bacterianas/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Humanos , Rayos Infrarrojos , Estructuras Metalorgánicas/farmacología , Plata/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
7.
Exp Ther Med ; 16(2): 547-556, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30116313

RESUMEN

Hypercholesterolemia is a major risk factor for cardiovascular disease. Mulberry leaf (ML) is a Traditional Chinese Medicine used to treat hyperlipidemia in clinical settings. The aim of the present study was to identify the potential effect and possible target of ML in anti-hypercholesterolemia. Male Sprague-Dawley rats were fed with a high-fat diet and treated with ML for 5 weeks. Blood lipid levels, total cholesterol (TC) and total bile acid (TBA) in the liver and feces were measured to assess the effects of ML on hypercholesterolemia. Harris's hematoxylin staining and oil red O staining was applied to observe the pathological change and lipid accumulation in the liver. Immunohistochemical assay was performed to observe the location of expressions of scavenger receptor class B type I and low-density lipoprotein (LDL) receptor (-R), and western blotting was applied to determine the protein expression of ATP-binding cassette transporter G5/G8 (ABCG5/8), nuclear transcription factor peroxisome proliferator-activated receptor-α (PPARα), farnesoid-X receptor (FXR) and cholesterol 7α-hydroxylase 1 (CYP7A1). The results demonstrated that ML treatment reduced serum TC and LDL-cholesterol levels, and liver TC and TBA contents; increased serum HDL-C levels, and fecal TC and TBA contents; and alleviated hepatocyte lipid degeneration. In addition, ML treatment inhibited liver LDL-R, PPARα and FXR protein expression, promoted protein expression of CYP7A1, and maintained the ratio of ABCG5/ABCG8. The findings of the present study provide a positive role of ML on cholesterol clearance via promoting cholesterol and TBA execration via FXR- and CYP7A1-mediated pathways; RCT regulation may be a potential mechanism of ML on anti-hypercholesterolemia.

8.
J Arthropod Borne Dis ; 12(4): 414-420, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30918910

RESUMEN

BACKGROUND: Veratrum nigrum (Liliaceae) is perennial medicinal plant widely used to treat various conditions. To determine its insecticidal properties against the German cockroach (Blattella germanica), several laboratory tests were carried out. METHODS: A 4kg dry sample of V. nigrum root was purchased from the medicinal material market in Yunnan Province in 2015, China. In contact toxicity tests, V. nigrum alkaloidal extract was topically applied to the abdomen of cockroaches using a micro-applicator. In vitro acetylcholinesterase (AChE) activity tests were performed using a modified Ellman method. RESULTS: Veratrum nigrum alkaloidal extract was toxic to male adults and 4th nymphs cockroaches, with median lethal dose (LD50) values of 14.90µg/insect, 14.21µg/insect for adults and 41.45µg/insect, 39.01µg/insect for 4th nymphs after 24h and 48h exposure, respectively. There was a significant difference between adults and nymphs in terms of tolerance to V. nigrum alkaloidal extract. There was no significant difference in mortalities at 24h and 48h, the lethal effect of V. nigrum alkaloidal extract on German cockroach was quick. AChE activity tests showed that V. nigrum alkaloidal extract had an excellent inhibitory effect on AChE: inhibition in the 4th nymphs and male adults had 50% inhibiting concentration (IC50) values of 3.56mg/ml and 5.78mg/ml respectively. The inhibitory effect of AChE activity was positively correlated with inhibitory time (0-20min), at a concentration of 1mg/ml, inhibition of nymph and adult AChE activity had 50% inhibiting time (IT50) values of 8.34min and 16.75min, respectively. CONCLUSION: V. nigrum may be explored as a potential natural insecticide for control of the German cockroach.

9.
Molecules ; 12(3): 552-62, 2007 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-17851410

RESUMEN

The flavonoid phlorhizin is abundant in the leaves of Sweet Tea (ST, Lithocarpus Polystachyus Rehd). Phlorhizin was preparatively separated and purified from a crude ST extract containing 40% total flavonoids by static adsorption and dynamic desorption on ADS-7 macroporous resin and neutral alumina column chromatography. Only water and ethanol were used as solvents and eluants throughout the whole separation and purification process. Using a phlorhizin standard as the reference compound, the target compound separated from the crude ST extracts was analyzed by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (EIS-MS) and identified as 99.87% pure (by HPLC-UV) phlorhizin. The results showed that 10 g of the target compound could be obtained from 40 g of the crude extracts in a single operation, indicating a 40% recovery. Therefore, this represents an efficient and environmentally-friendly technology for separating and purifying phlorhizin from ST leaves.


Asunto(s)
Mezclas Complejas/química , Fagaceae/química , Flavonoides/aislamiento & purificación , Florizina/aislamiento & purificación , Adsorción , Óxido de Aluminio , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Flavonoides/química , Glucósidos/química , Florizina/química , Extractos Vegetales/química , Soluciones , Espectrometría de Masa por Ionización de Electrospray , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA