Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 2856, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536562

RESUMEN

Early childhood is a critical stage for the foundation and development of the gut microbiome, large amounts of essential nutrients are required such as vitamin D. Vitamin D plays an important role in regulating calcium homeostasis, and deficiency can impair bone mineralization. In addition, most people know that breastfeeding is advocated to be the best thing for a newborn; however, exclusively breastfeeding infants are not easily able to absorb an adequate amount of vitamin D from breast milk. Understanding the effects of vitamin D supplementation on gut microbiome can improve the knowledge of infant health and development. A total of 62 fecal sample from healthy infants were collected in Taiwan. Of the 62 infants, 31 were exclusively breastfed infants and 31 were mixed- or formula-fed infants. For each feeding type, one subgroup of infants received 400 IU of vitamin D per day, and the remaining infants received a placebo. In total, there are 15 breastfed and 20 formula-fed infants with additional vitamin D supplementation, and 16 breastfed and 11 formula-fed infants belong to control group, respectively. We performed a comparative metagenomic analysis to investigate the distribution and diversity of infant gut microbiota among different types of feeding regimes with and without vitamin D supplementation. Our results reveal that the characteristics of infant gut microbiota not only depend on the feeding types but also on nutrients intake, and demonstrated that the vitamin D plays an important role in modulating the infant gut microbiota, especially increase the proportion of probiotics in breast-fed infants.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Fórmulas Infantiles/química , Leche Humana/química , Vitamina D/administración & dosificación , Lactancia Materna , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Humanos , Lactante , Masculino , Metagenoma , Metagenómica , Taiwán
2.
BMC Syst Biol ; 11(Suppl 7): 131, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29322917

RESUMEN

BACKGROUND: Anti-microbial peptides (AMPs), naturally encoded by genes and generally containing 12-100 amino acids, are crucial components of the innate immune system and can protect the host from various pathogenic bacteria and viruses. In recent years, the widespread use of antibiotics has resulted in the rapid growth of antibiotic-resistant microorganisms that often induce critical infection and pathogenesis. Recently, the advent of high-throughput technologies has led molecular biology into a data surge in both the amount and scope of data. For instance, next-generation sequencing technology has been applied to generate large-scale sequencing reads from foods, water, soil, air, and specimens to identify microbiota and their functions based on metagenomics and metatranscriptomics, respectively. In addition, oolong tea is partially fermented and is the most widely produced tea in Taiwan. Many studies have shown the benefits of oolong tea in inhibiting obesity, reducing dental plaque deposition, antagonizing allergic immune responses, and alleviating the effects of aging. However, the microbes and their functions present in oolong tea remain unknown. RESULTS: To understand the relationship between Taiwanese oolong teas and bacterial communities, we designed a novel bioinformatics scheme to identify AMPs and their functional types based on metagenomics and metatranscriptomic analysis of high-throughput transcriptome data. Four types of oolong teas (Dayuling tea, Alishan tea, Jinxuan tea, and Oriental Beauty tea) were subjected to 16S ribosomal DNA and total RNA extraction and sequencing. Metagenomics analysis results revealed that Oriental Beauty tea exhibited greater bacterial diversity than other teas. The most common bacterial families across all tea types were Bacteroidaceae (21.7%), Veillonellaceae (22%), and Fusobacteriaceae (12.3%). Metatranscriptomics analysis results revealed that the dominant bacteria species across all tea types were Escherichia coli, Bacillus subtilis, and Chryseobacterium sp. StRB126, which were subjected to further functional analysis. A total of 8194 (6.5%), 26,220 (6.1%), 5703 (5.8%), and 106,183 (7.8%) reads could be mapped to AMPs. CONCLUSION: We found that the distribution of anti-gram-positive and anti-gram-negative AMPs is highly correlated with the distribution of gram-positive and gram-negative bacteria in Taiwanese oolong tea samples.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Bacterias/genética , Perfilación de la Expresión Génica , Metagenómica , Té/microbiología , Bacterias/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA