Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 109(6): 1375-1385, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34905264

RESUMEN

Slow development has been shown to be a general mechanism to restore the fertility of thermo-sensitive and photoperiod-sensitive genic male sterile (TGMS and PGMS) lines in Arabidopsis. rpg1 is a TGMS line defective in primexine, which is essential for pollen wall pattern formation. Here, we showed that RPG1-GFP was highly expressed in microsporocytes, microspores, and pollen grains but not in the tapetum in the complemented transgenic line, suggesting that microsporocytes are the main sporophytic cells for primexine formation. Further cytological observations showed that primexine formation in rpg1 was partially restored under slow growth conditions, leading to its fertility restoration. RPG2 is the homolog of RPG1 in Arabidopsis. We revealed that the fertility recovery of rpg1 rpg2 was significantly reduced compared with that of rpg1 under low temperature. The RPG2-GFP protein was also expressed in microsporocytes in the RPG2-GFP (WT) transgenic line. These results suggest that RPG2 plays a redundant role in rpg1 fertility restoration. rpg1 plants were male sterile at the early growth stage, while their fertility was partially restored at the late developmental stage. The fertility of the rpg1 lateral branches was also partially restored. Further growth analysis showed that slow growth at the late reproductive stage or on the lateral branches led to fertility restoration. This work reveals the importance of gene redundancy in fertility restoration for TGMS lines and provides further insight into pollen wall pattern formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidad/genética , Infertilidad Vegetal/genética , Polen/metabolismo
2.
Plant Physiol ; 184(2): 923-932, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32796091

RESUMEN

Photoperiod- and thermosensitive genic male sterility (P/TGMS) lines are widely used in crop breeding. The fertility conversion of Arabidopsis (Arabidopsis thaliana) TGMS lines including cals5-2, which is defective in callose wall formation, relies on slow development under low temperatures. In this study, we discovered that cals5-2 also exhibits PGMS. Fertility of cals5-2 was restored when pollen development was slowed under short-day photoperiods or low light intensity, suggesting that slow development restores the fertility of cals5-2 under these conditions. We found that several other TGMS lines with defects in pollen wall formation also exhibited PGMS characteristics. This similarity indicates that slow development is a general mechanism of PGMS fertility restoration. Notably, slow development also underlies the fertility recovery of TGMS lines. Further analysis revealed the pollen wall features during the formation of functional pollens of these P/TGMS lines under permissive conditions. We conclude that slow development is a general mechanism for fertility restoration of P/TGMS lines and allows these plants to take different strategies to overcome pollen formation defects.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Fotoperiodo , Infertilidad Vegetal/genética , Infertilidad Vegetal/fisiología , Polen/crecimiento & desarrollo , Polen/genética , Frío , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA