Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anim Biotechnol ; 35(1): 2335340, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38587818

RESUMEN

This study explored the effects of different vitamin B5 (VB5) levels on intestinal growth and function of weaned piglets. Twenty-one piglets (7.20 ± 1.11 kg) were included in a 28-day feeding trial with three treatments, including 0 mg/kg (L-VB5), 10 mg/kg (Control) and 50 mg/kg (H-VB5) of VB5 supplement. The results showed that: Large intestine weight/body weight was the highest in H-VB5 group, Control and H-VB5 groups had significantly higher villus height and villus height/crypt depth than the L-VB5 in the ileum (p < .05). Goblet cells (ileal crypt) and endocrine cells (ileal villus) significantly increased in Control and H-VB5 (p < .05). The H-VB5 group exhibited significantly higher levels of ki67 and crypt depth in the cecum and colon, colonic goblet cells and endocrine cells were both rising considerably (p < .05). Isobutyric acid and isovaleric acid were significantly reduced in the H-VB5 group (p < .05), and there was a decreasing trend in butyric acid (p = .073). At the genus level, the relative abundance of harmful bacteria such as Clostridium_Sensu_Structo_1 Strecto_1, Terrisporbacter and Streptococcus decreased significantly and the relative abundance of beneficial bacteria Turicibacter increased significantly in H-VB5 group (p < .05). Overall, the addition of 50 mg/kg VB5 primarily enhanced the morphological structure, cell proliferation and differentiation of the ileum, cecum and colon. It also had a significant impact on the gut microbiota and short-chain fatty acids.


Asunto(s)
Ciego , Ácido Pantoténico , Animales , Ácido Butírico , Diferenciación Celular , Suplementos Dietéticos , Porcinos
2.
Anim Biotechnol ; 34(6): 1919-1930, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35416756

RESUMEN

This study aimed to investigate whether lactating Hu sheep's dietary protein levels could generate dynamic effects on the performance of their offspring. Twelve ewes with similar parity were fed iso-energy diets which contained different protein levels (P1: 9.82%, P2: 10.99%) (n = 6), and the corresponding offspring were divided into SP1 and SP2 (n = 12). At 60 days, half of the lambs were harvested for further study: the carcass weight (p = 0.043) and dressing percentage (p = 0.004) in the SP2 group were significantly higher than SP1. The acetic acid (p = 0.007), propionic acid (p = 0.003), butyric acid (p < 0.001) and volatile fatty acids (p < 0.001) in rumen fluid of SP2 were significantly lower than SP1. The expression of MCT2 (p = 0.024), ACSS1 (p = 0.039) and NHE3 (p = 0.006) in the rumen of SP2 was lower than SP1, while the HMGCS1 (p = 0.026), HMGCR (p = 0.024) and Na+/K+-ATPase (p = 0.020) was higher than SP1. The three dominant phyla in the rumen are Bacteroidetes, Proteobacteria and Firmicutes. The membrane transport, amino acid metabolism and carbohydrate metabolism of SP1 were relatively enhanced, the replication and repair function of SP2 was relatively enhanced. To sum up, the increase of dietary protein level significantly increased the carcass weight and dressing percentage of offspring and had significant effects on rumen volatile fatty acids, acetic acid activation and cholesterol synthesis related genes. HIGHLIGHTSIn the early feeding period, the difference in ADG of lambs was mainly caused by the sucking effect.The increase in dietary protein level of ewes significantly increased the carcass weight and dressing percentage of offspring.The dietary protein level of ewes significantly affected the volatile fatty acids (VFAs) and genes related to acetic acid activation and cholesterol synthesis in the rumen of their offspring.The membrane transport, amino acid metabolism and carbohydrate metabolism of the offspring of ewes fed with a low protein diet were relatively enhanced.The replication and repair function of the offspring of ewes fed with a high protein diet was relatively strengthened.


Asunto(s)
Lactancia , Rumen , Embarazo , Animales , Ovinos , Femenino , Rumen/metabolismo , Dieta/veterinaria , Ácidos Grasos Volátiles , Acetatos/análisis , Acetatos/metabolismo , Proteínas en la Dieta/análisis , Proteínas en la Dieta/metabolismo , Aminoácidos/análisis , Aminoácidos/metabolismo , Colesterol/metabolismo , Alimentación Animal/análisis , Leche/química , Suplementos Dietéticos
3.
Food Funct ; 12(16): 7402-7414, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34190232

RESUMEN

Niacin deficiency leads to inflammation of mucous membranes and diarrhoea. There are few reports on the effects of niacin on the intestinal health of weaned piglets. The present study was conducted to analyse the effects of niacin in weaned piglets along with its underlying mechanism. A total of 48 25-day-old weaned piglets (24 females and 24 males) were randomly allotted into four groups, each treatment were supplemented with 22.5, 30, 45, and 75 mg kg-1 niacin for a period of 14 days, with 12 piglets per diet and 1 piglet per pen. Six piglets (3 males and 3 females) were randomly selected from each treatment group and euthanised for intestinal tissue sampling on days 7 and 14 after the weaning day (day 0), respectively. Dietary niacin did not affect the growth performance of weaned piglets but quadratically affected (P < 0.05) the diarrhoea rate from days 7 to 14. The duodenal villus height and width and crypt depth in the 30 mg kg-1 niacin group were greater than those in the 45 mg kg-1 niacin group on day 7, and the jejunal crypt depth, ileal crypt depth, villus height and villus width decreased (linear, P < 0.05) with the increase in dietary niacin. However, the dietary supplementation with niacin increased (linear, P < 0.001) the jejunal villus height, crypt depth and villus width on day 14. Dietary niacin increased (linear, P < 0.05) the alkaline phosphatase activity in the jejunal mucosa of weaned piglets on day 7 but decreased (linear, P < 0.05) its activity on day 14. The number of Ki67 positive cells per crypt was decreased (linear, P < 0.05) with the dietary niacin on day 7 but increased (linear, P < 0.05) with dietary niacin contents on day 14. Moreover, dietary niacin altered (P < 0.05) SLC5A1, SLC15A1, SLC6A19, TJP-1, occludin and claudin-1 mRNA expression in the small intestine. These results indicate that dietary niacin has different effects on intestinal morphology and functions in the first and second weeks postweaning and that the dietary supplementation with niacin may, by modulating intestinal cell proliferation, affect the intestinal health.


Asunto(s)
Peso Corporal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/fisiopatología , Niacina/farmacología , Animales , Diarrea/fisiopatología , Dieta , Suplementos Dietéticos , Femenino , Masculino , Modelos Animales , Niacina/administración & dosificación , Porcinos , Destete
4.
Vet Med Sci ; 7(5): 1860-1866, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33955692

RESUMEN

The purpose of this study was to investigate the effects of Amaranthus hypochondriacus (AH) inclusion in the diets of gestating and lactating sows on the lactational feed intake, nutrient digestibility, and growth performance of suckling piglets. During gestation, 40 multiparous Landrace sows were restrictively fed with either a control diet or a diet including 30% AH. Both diets had similar levels of digestible energy and crude protein, but the 30% AH diet had higher crude fibre levels than the control diet. After breeding, lactating sows were fed ad libitum with one of two isoenergetic and isonitrogenous diets, either a control diet or a diet containing 10% AH. In gestating sows, AH supplementation was found to be associated with decreased digestibility of crude protein and dry matter (p < .001), resulting in lesser backfat depth (p < .001). However, in lactating sows, AH supplementation had little effect on digestibility and milk composition; moreover, it increased the feed intake (p < .001) and decreased backfat loss (p < .001) in sows. On the 21st day of lactation, suckling piglets in AH group showed significantly greater average daily gains (p < .001), and average body weight and litter weight significantly increased compared with sows fed the control diet. In conclusion, AH-supplementation increased lactational feed intake in sows and improved the growth performance of suckling piglets.


Asunto(s)
Amaranthus , Lactancia , Alimentación Animal/análisis , Animales , Suplementos Dietéticos , Ingestión de Alimentos , Nutrientes , Fitomejoramiento , Embarazo , Porcinos
5.
Anim Nutr ; 7(1): 101-110, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33997337

RESUMEN

The present study was conducted to evaluate the effect of dietary folic acid on the growth performance, intestinal morphology, and intestinal epithelial cells renewal in post-weaning piglets. Twenty-eight piglets (weaned at day 21, initial body weight of 6.73 ± 0.62 kg) were randomly allotted to 4 treatments with 7 pens per diet and 1 piglet per pen. The piglets were fed the same antibiotic-free and zinc oxide-free basal diets supplemented with folic acid at 0, 3, 9, and 18 mg/kg for 14 days. The results showed that dietary supplementation with folic acid increased villus height (VH) (P = 0.003; linear, P = 0.001), VH-to-crypt depth (VH:CD) ratio (P = 0.002; linear, P = 0.001), villus surface area (VSA) (P = 0.026; linear, P = 0.010). The analyzed parameters ADG, serum urea nitrogen (BUN) content, VH, VSA, and serum folate (SF) concentration responded linearly to the dietary folic acid concentration when the dietary folic acid concentration was below 4.42, 5.26, 4.79, 3.47, and 3.53 mg/kg respectively (R 2  = 0.995, 0.995, 0.999, 0.999, 0.872, P = 0.09, 0.07, 0.09, 0.09, 0.36, respectively), as assessed by a two-linear broken-line regression. Above these breakpoints, the response of ADG, VH, VSA, and SF plateaued in response to changes in dietary folic acid concentration. Moreover, dietary supplementation with folic acid significantly increased the lactase (P = 0.001; linear, P = 0.001) and sucrase activities (P = 0.021; linear, P = 0.010) in the jejunal mucosa of weaned piglets. The mRNA expression of solute carrier family 6 member 19 (SLC6a19), solute carrier family 1 member 1 (SLC7a1), tumor necrosis factor-α (TNF-α), the number of Ki67 positive cells, and cell shedding rate had a significant linear contrast (P = 0.023, 0.021, 0.038, 0.049, and 0.008, respectively) in dietary folic acid groups. In conclusion, our results indicate that folic acid supplementation can improve the growth performance and intestinal morphology of weaned piglets by maintaining the balance of epithelial cell renewal.

6.
Vet Med Sci ; 7(4): 1347-1358, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33620158

RESUMEN

The purpose of this study was to investigate the effects of adding Pennisetum purpureum (P. purpureum, also known as Napier grass or elephant grass) to the diets of late gestation on the antioxidant indexes, immune indexes and faecal microbiota of sows. At the 90 days of gestation, 300 healthy sows were randomly divided into three groups, and they received the basic commercial diet or added 5% P. purpureum and 10% P. purpureum, respectively. The experiment started from 90 days of gestation to parturition. The results showed that the total antioxidant capacity, immunoglobulins and serum equol concentrations of sows on 100 days of gestation and at parturition increased linearly (p < .05) with the increase of the content of P. purpureum in the gestation diet. The 5% P. purpureum increased the relative abundance of Bacteroidetes (p = .027) and Actinobacteria (p < .001) at phylum level, Coriobacteriaceae (p < .001) at family level and Prevotellaceae_UCG_001 (p = .004) at genus level, and decreased the relative abundance of Escherichia_Shigella (p < .001) at genus level. In summary, this study shows that the additive of P. purpureum can increase the concentration of serum equol, improve the antioxidant capacity and immune function of sow in late gestation. In addition, the additive of 5% P. purpureum in the diet might change the composition of intestinal microbiota of sows, particularly the relative abundance of Coriobacteriaceae (p < .001) increased.


Asunto(s)
Antioxidantes/metabolismo , Suplementos Dietéticos/análisis , Heces/microbiología , Inmunidad Innata , Microbiota , Pennisetum/química , Preñez/fisiología , Sus scrofa/inmunología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Femenino , Inmunidad Innata/efectos de los fármacos , Microbiota/efectos de los fármacos , Embarazo , Preñez/efectos de los fármacos
7.
J Anim Physiol Anim Nutr (Berl) ; 105(2): 272-285, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33399256

RESUMEN

Fifty-six piglets were weaned at 21 days and randomly assigned to 1 of 8 dietary treatments with 7 replicate pens for a 14-day experimental period. The eight experimental diets were prepared via a 2 × 4 factorial arrangement with citric acid (CA; 0 and 0.3%) and dietary electrolyte balance (dEB, Na +K - Cl mEq/kg of the diet; -50, 100, 250, and 400 mEq/kg). Varying dEB values were obtained by altering calcium chloride and sodium bicarbonate contents. Dietary CA significantly increased (p < .05) villus height (VH) and villus height:crypt depth (VH:CD) in the jejunum. Piglets fed a 250 mEq/kg diet increased (p < .05) VH and VH:CD values in the duodenum. Jejunal VH and VH:CD increased (quadratic; p < .05), and ileal VH:CD (liner and quadratic; p < .05) decreased as dEB was increased in diets without CA, but no such effect was observed on the diets containing CA (dEB ×CA; p < .05). The CD in jejunum (quadratic; p < .05) increased as dEB was increased in diets containing CA, whereas it was decreased (linear; p < .05) in the diets without CA (dEB ×CA; p < .001). Dietary CA increased maltase activity and reduced the number of Ki67-positive cells (p < .05). Increasing dEB values in diets without CA increased sucrose and lactase activities (quadratic; p < .05), but no such effect was observed in the diets with CA (dEB ×CA; p < .05). An interaction effect between dEB and CA on the number of Ki67-positive cells was observed (p < .001). In conclusion, 250 mEq/kg dEB diet with CA improved piglet intestinal digestion and absorption function by improving intestinal morphology and increasing digestive enzyme activities. However, these improvements were also observed in piglets fed the 100 mEq/kg dEB diet without CA.


Asunto(s)
Alimentación Animal , Ácido Cítrico , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Nutrientes , Porcinos , Equilibrio Hidroelectrolítico
8.
J Anim Sci ; 98(8)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32756964

RESUMEN

The purpose of the present study was to discover the effects of iron on the intestinal development and epithelial maturation of suckling piglets. Twenty-seven newborn male piglets from 9 sows (3 piglets per sow), with similar body weight, were selected. The 3 piglets from the same sow were randomly divided into 1 of the 3 groups. The piglets were orally administrated with 2 mL of normal saline (CON group) or with 25 mg of iron by ferrous sulfate (OAFe group; dissolved in normal saline) on the 2nd, 7th, 12th, and 17th day, respectively, or intramuscularly injected with 100 mg of iron by iron dextran (IMFe group) on the 2nd day. The slaughter was performed on the 21st day and intestinal samples were collected. Compared with the CON group, iron supplementation significantly increased the length (P < 0.001), weight (P < 0.001), relative weight (P < 0.001), and the length:weight ratio (P < 0.001) of the small intestine in both OAFe and IMFe groups. The villus height (P < 0.001), crypt depth (CD) (P < 0.001), villus width (P = 0.002), and surface area (P < 0.001) in the jejunum of IMFe and OAFe piglets were also greater than those in CON piglets. The mRNA expression of trehalase (Treh; P = 0.002) and sucrase isomaltase (Sis; P = 0.043), markers of epithelial maturation, increased in OAFe and IMFe piglets, respectively. Moreover, enterocyte vacuolization, observed in fetal-type enterocyte, was reduced in OAFe and IMFe piglets, compared with CON piglets. However, no significant difference in the expression of the target genes of wnt/ß-catenin signaling pathway was observed. The results indicated that both oral administration and intramuscular injection with iron promoted intestinal development and epithelial maturation in suckling piglets and that the effects of iron may be independent of wnt/ß-catenin signaling.


Asunto(s)
Suplementos Dietéticos/análisis , Hierro/administración & dosificación , Porcinos/crecimiento & desarrollo , Administración Oral , Animales , Epitelio/efectos de los fármacos , Epitelio/crecimiento & desarrollo , Femenino , Inyecciones Intramusculares , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Intestinos/crecimiento & desarrollo , Hierro/metabolismo , Yeyuno/efectos de los fármacos , Yeyuno/crecimiento & desarrollo , Yeyuno/metabolismo , Masculino , Distribución Aleatoria
9.
J Anim Sci ; 98(5)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32253427

RESUMEN

Fifty-six piglets (6.26 ± 0.64 kg BW) were weaned at 21 d and randomly assigned to one of the eight dietary treatments with seven replicate pens for a 14-d experimental period. The eight experimental diets were prepared via a 2 × 4 factorial arrangement with citric acid (CA; 0% and 0.3%) and dietary electrolyte balance (dEB, Na + K - Cl mEq/kg of the diet; -50, 100, 250, and 400 mEq/kg). Varying dEB values were obtained by altering the contents of calcium chloride and sodium bicarbonate. An interaction (P < 0.05) between dEB and CA in diarrhea score and the number of goblet cell in jejunum were observed. Ileum pH significantly decreased in weaned piglets fed 250 mEq/kg dEB diet compared with those fed -50 and 400 mEq/kg dEB diets (P < 0.05). Supplementation of 0.3% CA decreased the number of goblet cell in the ileal crypt (P < 0.05) and the relative mRNA expression of cystic fibrosis transmembrane conductance regulator, tumor necrosis factor-α, interferon-γ (IFN-γ), interleukin-1ß (IL-1ß), interleukin-10 (IL-10), zona occludens-1, and Claudin-1 (P < 0.05). Increasing dEB values increased the number of goblet cells in the jejunal crypt (P < 0.05). A 250-mEq/kg dEB diet decreased the relative mRNA expression of IFN-γ, IL-1ß, and IL-10 (P < 0.05) than 100-mEq/kg dEB diet. The interaction between dEB and CA on the relative abundances of Cyanobacteria and Saccharibacteria was observed (P < 0.05). Supplementation of 0.3% CA increased relative abundances of and Streptococcus hyointestinalis. Piglets fed 250-mEq/kg diet increased relative abundances of Firmicutes and Lactobacillus rennini, and decreased the relative abundance of Proteobacteria, Veillonella, Actinobacillus minor, and Escherichia-Shigella.In conclusion, supplementation of 0.3% CA resulted in differential expression of inflammatory cytokines, ion transporters, and tight junction proteins, and changes in the microbial community composition. A 250-mEq/kg dEB diet reduced gastrointestinal pH and promoted the enrichment of beneficial microbes in the gut microbiota, thereby suppressing inflammation and harmful bacteria. However, the addition of CA to diets with different dEB values did not promote intestinal function in weaned piglets.


Asunto(s)
Ácido Cítrico/farmacología , Diarrea/veterinaria , Suplementos Dietéticos/análisis , Microbioma Gastrointestinal , Enfermedades de los Porcinos/metabolismo , Equilibrio Hidroelectrolítico , Animales , Citocinas/metabolismo , Diarrea/metabolismo , Diarrea/microbiología , Dieta/veterinaria , Intestinos/microbiología , Intestinos/fisiología , Masculino , Distribución Aleatoria , Porcinos , Enfermedades de los Porcinos/microbiología , Destete
10.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 269-279, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31553089

RESUMEN

This study was conducted to determine the effects of oral administration with glutamate on metabolism of suckling piglets based on 1 H-Nuclear magnetic resonance (1 H NMR) spectroscopy through the level of metabolism. Forty-eight healthy [(Yorkshire × Landrace) × Duroc] piglets born on the same day with a similar birth bodyweight (1.55 ± 0.20 kg) were obtained from six sows (8 piglets per sow). The piglets from each sow were randomly assigned into four treatments (2 piglets per treatment). The piglets were given 0.09 g/kg body weight (BW) of sodium chloride (CN group), 0.03 g/kg BW monosodium glutamate (LMG group), 0.25 g/kg BW monosodium glutamate (MMG group) and 0.50 g/kg BW monosodium glutamate (HMG group) twice a day respectively. An 1 H NMR-based metabolomics' study found that the addition of monosodium glutamate (MSG) significantly reduced serum citrate content in 7-day-old piglets, while HMG significantly increased serum trimethylamine content and significantly reduced unsaturated fat content in 7-day-old piglets (p < .05). The content of glutamine, trimethylamine, albumin, choline and urea nitrogen was significantly increased and the creatinine content decreased significantly in the 21-day-old HMG (p < .05). Analysis of serum hormones revealed that glucagon-like peptide-1 (GLP-1) content in the 21-day-old HMG was highest (p < .05). The cholecystokinin (CCK) content in the HMG of 7-day-old piglets was lower than that in the LMG (p < .05), and the CCK content in the serum of the 21-day-old MMG was highest (p < .05). The serum leptin levels in the 21-day-old HMG were the lowest (p < .05). The serum insulin content in the 7-day-old MMG was highest (p < .05). This study suggests that MSG plays an important role in the metabolism of sugar, fat and protein (amino acids). These results provide a theoretical basis for designing piglet feed formulations.


Asunto(s)
Animales Lactantes , Metaboloma/efectos de los fármacos , Metabolómica , Glutamato de Sodio/farmacología , Porcinos/fisiología , Administración Oral , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Suplementos Dietéticos , Porcinos/sangre
11.
J Anim Sci ; 97(12): 4865-4874, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31679024

RESUMEN

Vitamin B6 (VB6) is an important coenzyme factor which participates in many metabolic reactions, especially amino acid metabolism. There are few reports on how VB6 mediates weaned piglet intestinal health. This study purposed to investigate dietary VB6 effects on growth, diarrhea rates, and intestinal morphology and function in weaned piglets fed a high-crude protein (22% CP) diet. Eighteen 21-d-old weaned [(Yorkshire × Landrace) × Duroc] piglets with body weights of 7.03 ± 0.15 (means ± SEM) kg were randomly assigned into 3 VB6-containing dietary treatments. Vitamin B6 content was: 0, 4, and 7 mg/kg, respectively. The feeding period lasted 14 d. The results showed that no significant difference existed for the growth performance. The 7 mg/kg VB6 group had a tendency to decrease diarrhea rate (P = 0.065). Blood biochemical parameters analysis demonstrated that total protein, cholesterol, and high-density lipoprotein significantly increased in the 7 mg/kg VB6 group (P < 0.05). In the jejunum, no significant differences were detected for villus height, villus width, crypt depth, villus height and crypt depth ratios, and positive Ki67 counts and the mRNA expression of inflammatory cytokines. Vitamin B6 significantly increased the mRNA expression of SLC6A19 and SLC6A20 (P < 0.05) and decreased the mRNA expression of SLC36A1 (P < 0.05). In the ileum, VB6 significantly increased villus height and villus width (P < 0.05) while decreased positive Ki67 cell counts for 7 mg/kg VB6 group (P < 0.05). Vitamin B6 had significantly increased the mRNA expression of interleukin-1ß, tumor necrosis factor-α,cyclo-oxygen-ase-2, and transforming growth factor-ß (P < 0.05). Vitamin B6 also had significantly increased mRNA expression of SLC6A19, SLC7A6, SLC7A7, and SLC36A1 (P < 0.05). These findings suggest that dietary supplementation with VB6 may affect the intestinal morphology and absorption and metabolism of protein in weaned piglets fed a high-protein diet by altering the expression of intestinal inflammatory cytokines and amino acid transporters.


Asunto(s)
Diarrea/veterinaria , Dieta Rica en Proteínas/veterinaria , Suplementos Dietéticos/análisis , Porcinos/fisiología , Vitamina B 6/administración & dosificación , Animales , Citocinas/análisis , Dieta/veterinaria , Inmunohistoquímica/veterinaria , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Intestinos/anatomía & histología , Intestinos/citología , Intestinos/efectos de los fármacos , Destete
12.
J Anim Sci ; 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30852589

RESUMEN

Bile acid, a cholesterol metabolite, promotes gastrointestinal tract digestion and absorption of cholesterol, lipids, and fat-soluble vitamins. It is a signaling regulatory molecule that influences a variety of endocrinal and metabolic activities. This study investigated the effects of hyodeoxycholic acid (HDCA) as a dietary supplement on endocrine cell differentiation and function and weaned piglet serum biochemical indices. Sixteen piglets [Duroc × (Landrace × Yorkshire)] were individually housed and weaned at 21 d of age (BW of 6.14 ± 0.22 kg). Uniform weight animals were randomly assigned to 1 of 2 treatments (8 replicate pens per treatment and 1 piglet per pen). The treatments were 1) base diet (control) and 2) base diet supplemented with 2 g/kg of HDCA. Control and HDCA piglet numbers of chromogranin A (CgA)-positive cells per crypt did not differ. HDCA CgA-positive cells numbers decreased (P < 0.05) in the jejunal villi showed a tendency to decrease (P < 0.10) in the ileal villi and showed tendency toward an increase (P < 0.10) in the duodenal villi compared with the controls. The HDCA diet led to a decline in glucagon-like peptide 2 (P < 0.01) concentrations, but did not affect plasma glucagon-like peptide 1. HDCA supplementation increased (P < 0.05) the mRNA expression of jejunal Insm1, Sst, PG, and Gast, but decreased (P < 0.05) duodenal expression of Insm1, jejunal Pdx1, and ileal NeuroD1. HDCA elevated globulin and immunoglobulin A (P < 0.05) serum concentrations and decreased the albumin/globulin ratio (P < 0.05). Total protein and immunoglobulin G serum levels tended to increase compared with the control group. These results indicate that dietary HDCA at 2 g/kg may regulate enteroendocrine cell differentiation and play a role in increasing weaned piglet humoral immunity.

13.
J Anim Sci ; 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30753616

RESUMEN

Bile acid, a cholesterol metabolite, promotes gastrointestinal tract digestion and absorption of cholesterol, lipids, and fat-soluble vitamins. It is a signaling regulatory molecule that influences a variety of endocrinal and metabolic activities. This study investigated the effects hyodeoxycholic acid (HDCA) as a dietary supplement on endocrine cell differentiation and function and weaned piglet serum biochemical indices. Sixteen piglets (Duroc × [Landrace × Yorkshire]) were individually housed and weaned at 21 days of age (body weight of 6.14 ± 0.22 kg). Uniform weight animals were randomly assigned to one of two treatments (eight replicate pens per treatment and one piglet per pen). The treatments were 1) base diet (control); and 2) base diet supplemented with 2 g/kg of HDCA. Control and HDCA piglet numbers of CgA-positive cells per crypt did not differ. HDCA CgA-positive cells numbers decreased (P < 0.05) in the jejunal villi, showed a tendency to decrease (P < 0.10) in the ileal villi, and showed tendency toward an increase (P < 0.10) in the duodenal villi compared to the controls. The HDCA diet led to a decline in GLP-2 (P < 0.01) concentrations, but did not affect plasma GLP-1. HDCA supplementation increased (P < 0.05) the mRNA expression of jejunal Insm1, Sst, PG, and Gast, but decreased (P < 0.05) duodenal expression of Insm1, jejunal Pdx1, and ileal NeuroD1. HDCA elevated GLO and IgA (P < 0.05) serum concentrations and decreased the A/G ratio (P < 0.05). TP and IgG serum levels tended to increase compared to the control group. These results indicate that dietary HDCA at 2 g/kg may regulate enteroendocrine cell differentiation and play a role in increasing weaned piglet humoral immunity.

14.
J Anim Sci ; 97(3): 1212-1221, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649512

RESUMEN

Vitamin E (VE) is an indispensable vitamin in piglet feed formula. Among other things, it affects tissues including small intestine tissues and in particular its major unit intestinal epithelial cells. Previously, limited in vivo experiments have focused on the effect of VE on the intestine, particularly digestion and absorption. VE has been shown to inhibit proliferation of some types of cells. This experiment was conducted to test the hypothesis that VE affects intestinal functions by influencing the intestinal epithelial cell proliferation. Thirty 21-d old weaned [(Yorkshire × Landrace) × Duroc] piglets with BWs of 6.36 ± 0.55 kg were randomly divided into five VE-containing feeding formula groups. The treatments were (i) 0 IU (control), (ii) 16 IU, (iii) 32 IU, (iv) 4. 80 IU, and (v) 5. 160 IU. The treatments lasted 14 d. At the end of the experiment, all subjects were sacrificed to obtain blood and tissue samples. The results suggest that VE did not affect the growth performance. VE did tend to decrease jejunal crypt depth (linear, P = 0.056) and villus width (linear, P < 0.05). Sucrase activity significantly decreased in the adding 80 IU VE compared with the control (P < 0.05). Jejunal crypt, cell proliferation in 80 IU group significantly decreased compared with the control group (P < 0.05). This study suggests that dietary VE may affect intestinal morphology and functions by inhibiting weaned piglet jejunal epithelial cell proliferation.


Asunto(s)
Suplementos Dietéticos/análisis , Nutrientes/metabolismo , Porcinos/fisiología , Vitamina E/farmacología , Alimentación Animal/análisis , Animales , Proliferación Celular/efectos de los fármacos , Dieta/veterinaria , Células Epiteliales/efectos de los fármacos , Femenino , Mucosa Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Yeyuno/efectos de los fármacos , Masculino , Distribución Aleatoria
15.
J Anim Sci ; 96(12): 5124-5133, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30169651

RESUMEN

Intestinal epithelial cells undergo rapid renewal along the crypt-villus axis (CVA), which ensures intestinal functions. Weaning stress differentially effects intestinal epithelial cell metabolism and physiological states along the CVA. Sulfur amino acids (SAA) play a key role in intestinal epithelial cell functioning. This study evaluated the effects of SAA dietary supplementation on weaning pig jejunal epithelial cells along the CVA. Sixteen Duroc × Landrace × Yorkshire piglets (6.16 ± 0.22 kg BW) were weaned at 21 d of age and were blocked by BW and gender and the randomly assigned to 1 of 2 groups fed diets consisting of low (0.53%) or high (0.85%) levels of SAA for a 7-d period. All piglets were euthanized for tissue sampling on day 7 postweaning. Jejunal epithelial cells were isolated along the CVA to yield 3 "cell fractions" (upper villus, middle villus, and crypt cells). The number of proliferating cells per crypt of piglets fed the high SAA diet was lower (P < 0.05) than that for low SAA diet. High SAA diet piglets tended to have decreased (P = 0.059) sucrase activities compared low SAA diet piglets. A high SAA diet increased (P < 0.05) total antioxidant capacity, catalase, and superoxide dismutase activities compared with a low SAA diet. mRNA expression levels of claudin-1, Slc5a1, and Slc7a9 in high SAA diet piglets were lower (P < 0.05) than for low SAA diet piglets. There were no interactions between dietary SAA and cell sections along the CVA for enzyme activities and mRNA expression in any of the weaned piglets. Protein amounts and phosphorylation levels related to Wnt/ß-catenin and mechanistic targeting of rapamycin (mTOR) signaling pathways were affected by SAA in weaning piglets. These findings indicate that dietary SAA affects jejunal cell proliferation and functions in weaning piglets. There appears to be no interactions between dietary SAA and cell sections along the CVA. The effects of SAA may be partly through affecting antioxidant capacity, and Wnt/ß-catenin and mTOR signaling pathway.


Asunto(s)
Aminoácidos Sulfúricos/farmacología , Alimentación Animal/análisis , Dieta/veterinaria , Yeyuno/efectos de los fármacos , Porcinos/fisiología , beta Catenina/metabolismo , Aminoácidos Sulfúricos/administración & dosificación , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Antioxidantes/metabolismo , Proliferación Celular , Suplementos Dietéticos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Yeyuno/citología , Yeyuno/metabolismo , Distribución Aleatoria , Transducción de Señal
16.
J Anim Sci ; 96(3): 1130-1139, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29373684

RESUMEN

Early weaning results in intestinal dysfunction in piglets, while sulfur amino acids (SAA) are involved in improving intestinal functions. We tested a hypothesis that dietary supplementation with SAA can improve intestinal functions of weaning piglets and analyzed the effects of different dietary SAA levels on intestinal functions. A total of 80 piglets (Duroc × Landrace × Yorkshire) were weaned at 21 d of age and randomly assigned to one of the five diets that contained 0.53%, 0.63%, 0.74%, 0.85%, or 0.96% SAA, which corresponded to 70%, 85%, 100%, 115%, or 130% of the SAA:Lys ratio recommended by the National Research Council (2012). The 14 d feeding experiment involved 16 pens per diet and one piglet per pen. Eight randomly selected piglets from each treatment were euthanized for tissue sampling on day 7 and 14 post weaning. Supplementation with SAA led to a rise over time in G:F (linear, P = 0.001; quadratic, P = 0.001). Between day 0 and 14 of treatment, the jejunal crypt depth decreased (linear, P = 0.018; quadratic, P = 0.015), while that of the duodenal villus (linear, P = 0.049) and ileal villus width (linear, P = 0.029; quadratic, P = 0.034) increased. The activities of jejunal alkaline phosphatase (ALP) were quadratically increased (P = 0.040) from day 0 to 14 due to dietary SAA. Dietary SAA also elevated the activities of jejunal lactase (linear, P = 0.003; quadratic, P = 0.004), jejunal sucrase (linear, P = 0.032; quadratic, P = 0.027), and jejunal contents of glutathione (GSH) from day 0 to 7, as well as the activity of jejunal maltase (linear, P = 0.014; quadratic, P = 0.001) between day 0 and 14. During the first wk, dietary SAA linearly increased the amounts of intestinal-type fatty acid-binding protein (I-FABP) (P = 0.048) and SGLT-1 (P = 0.021) and linearly decreased the amount of GLUT2 (P = 0.029) proteins in the jejunum. The abundance of jejunal I-FABP (P = 0.044) and PEPT1 (P = 0.049) protein linearly increased from day 0 to 14 in response to this supplementation. These findings indicate that there is a dose-dependent response to dietary SAA on feed efficiency and intestinal parameters of weanling pigs.


Asunto(s)
Aminoácidos Sulfúricos/farmacología , Alimentación Animal/análisis , Suplementos Dietéticos , Porcinos/fisiología , Animales , Dieta/veterinaria , Femenino , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Distribución Aleatoria , Porcinos/crecimiento & desarrollo , Destete
17.
Bioresour Technol ; 249: 844-850, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29136940

RESUMEN

p-Chloronitrobenzene (p-CNB) is a persistent refractory and toxic pollutant with a concentration up to 200 mg/L in industrial wastewater. Here, a super-fast removal rate was found at 0.2-0.8 V of external voltage over a p-CNB concentration of 40-120 mg/L when a bioelectrochemical technology is used comparing to the natural biodegradation and electrochemical methods. The reduction kinetics (k) was fitted well according to pseudo-first order model with respect to the different initial concentration, indicating a 1.12-fold decrease from 1.80 to 0.85 h-1 within the experimental range. Meanwhile, the highest k was provided at 0.5 V with the characteristic of energy saving. It was revealed that the functional bacterial (Propionimicrobium, Desulfovibrio, Halanaerobium, Desulfobacterales) was selectively enriched under electro-stimulation, which possibly processed Cl-substituted nitro-aromatics reduction. The possible degradation pathway was also proposed. This work provides the beneficial choice on the rapid treatment of high-concentration p-CNB wastewater.


Asunto(s)
Biodegradación Ambiental , Nitrobencenos , Técnicas Electroquímicas , Aguas Residuales
18.
J Biol Chem ; 290(22): 14192-207, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25770214

RESUMEN

Spider venom is a complex mixture of bioactive peptides to subdue their prey. Early estimates suggested that over 400 venom peptides are produced per species. In order to investigate the mechanisms responsible for this impressive diversity, transcriptomics based on second generation high throughput sequencing was combined with peptidomic assays to characterize the venom of the tarantula Haplopelma hainanum. The genes expressed in the venom glands were identified, and the bioactivity of their protein products was analyzed using the patch clamp technique. A total of 1,136 potential toxin precursors were identified that clustered into 90 toxin groups, of which 72 were novel. The toxin peptides clustered into 20 cysteine scaffolds that included between 4 and 12 cysteines, and 14 of these groups were newly identified in this spider. Highly abundant toxin peptide transcripts were present and resulted from hypermutation and/or fragment insertion/deletion. In combination with variable post-translational modifications, this genetic variability explained how a limited set of genes can generate hundreds of toxin peptides in venom glands. Furthermore, the intraspecies venom variability illustrated the dynamic nature of spider venom and revealed how complex components work together to generate diverse bioactivities that facilitate adaptation to changing environments, types of prey, and milking regimes in captivity.


Asunto(s)
Proteómica/métodos , Venenos de Araña/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cisteína/química , ADN Complementario/metabolismo , Etiquetas de Secuencia Expresada , Eliminación de Gen , Datos de Secuencia Molecular , Mutación , Neuronas/metabolismo , Neurotoxinas/química , Técnicas de Placa-Clamp , Péptidos/química , Filogenia , Procesamiento Proteico-Postraduccional , Ratas , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Arañas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA