Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Food Chem Toxicol ; 179: 113948, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37460037

RESUMEN

New approach methods (NAMs) have been developed to predict a wide range of toxicities through innovative technologies. Liver injury is one of the most extensively studied endpoints due to its severity and frequency, occurring among populations that consume drugs or dietary supplements. In this review, we focus on recent developments of in silico modeling for liver injury prediction using deep learning and in vitro data based on adverse outcome pathways (AOPs). Despite these models being mainly developed using datasets generated from drug-like molecules, they were also applied to the prediction of hepatotoxicity caused by herbal products. As deep learning has achieved great success in many different fields, advanced machine learning algorithms have been actively applied to improve the accuracy of in silico models. Additionally, the development of liver AOPs, combined with big data in toxicology, has been valuable in developing in silico models with enhanced predictive performance and interpretability. Specifically, one approach involves developing structure-based models for predicting molecular initiating events of liver AOPs, while others use in vitro data with structure information as model inputs for making predictions. Even though liver injury remains a difficult endpoint to predict, advancements in machine learning algorithms and the expansion of in vitro databases with relevant biological knowledge have made a huge impact on improving in silico modeling for drug-induced liver injury prediction.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Simulación por Computador
2.
ACS Pharmacol Transl Sci ; 6(5): 683-701, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37200814

RESUMEN

Dietary supplements and natural products are often marketed as safe and effective alternatives to conventional drugs, but their safety and efficacy are not well regulated. To address the lack of scientific data in these areas, we assembled a collection of Dietary Supplements and Natural Products (DSNP), as well as Traditional Chinese Medicinal (TCM) plant extracts. These collections were then profiled in a series of in vitro high-throughput screening assays, including a liver cytochrome p450 enzyme panel, CAR/PXR signaling pathways, and P-glycoprotein (P-gp) transporter assay activities. This pipeline facilitated the interrogation of natural product-drug interaction (NaPDI) through prominent metabolizing pathways. In addition, we compared the activity profiles of the DSNP/TCM substances with those of an approved drug collection (the NCATS Pharmaceutical Collection or NPC). Many of the approved drugs have well-annotated mechanisms of action (MOAs), while the MOAs for most of the DSNP and TCM samples remain unknown. Based on the premise that compounds with similar activity profiles tend to share similar targets or MOA, we clustered the library activity profiles to identify overlap with the NPC to predict the MOAs of the DSNP/TCM substances. Our results suggest that many of these substances may have significant bioactivity and potential toxicity, and they provide a starting point for further research on their clinical relevance.

3.
Methods Mol Biol ; 2454: 811-827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34128205

RESUMEN

Human pluripotent stem cells (hPSCs), such as induced pluripotent stem cells (iPSCs), hold great promise for drug discovery, toxicology studies, and regenerative medicine. Here, we describe standardized protocols and experimental procedures that combine automated cell culture for scalable production of hPSCs with quantitative high-throughput screening (qHTS) in miniaturized 384-well plates. As a proof of principle, we established dose-response assessments and determined optimal concentrations of 12 small molecule compounds that are commonly used in the stem cell field. Multi-parametric analysis of readouts from diverse assays including cell viability, mitochondrial membrane potential, plasma membrane integrity, and ATP production was used to distinguish normal biological responses from cellular stress induced by small molecule treatment. Collectively, the establishment of integrated workflows for cell manufacturing, qHTS, high-content imaging, and data analysis provides an end-to-end platform for industrial-scale projects and should leverage the drug discovery process using hPSC-derived cell types.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos
4.
PLoS Negl Trop Dis ; 15(5): e0009432, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34033658

RESUMEN

BACKGROUND: Anthelminthic treatment options against schistosomiasis are limited. The current treatment relies almost exclusively on a single drug, praziquantel (PZQ). As a consequence, the development of resistance to PZQ and limited activity of PZQ against earlier development stages are respectively a risk and a limitation to achieving the goals of the new WHO roadmap towards elimination. For the discovery of new chemical starting points, the in vitro drug screening on Schistosoma mansoni (S. mansoni) against newly transformed schistosomula (NTS) is still the most predominant approach. The use of only NTS in the initial screening limits sensitivity to potential new compounds which are predominantly active in later developmental stages. Using our recently described highly standardized, straightforward and reliable culture method that generates high rates of juvenile worms, we aimed to repurpose a subset of the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection (340 compounds) to identify new hits with an in vitro worm culture assay. METHODOLOGY/PRINCIPAL FINDINGS: Cercariae were mechanically transformed into skin-stage (SkS) schistosomula and continuously cultured for 3-6 weeks to the liver stage (LiS). A commercial source of serum was identified, and decrease of NTS/well along with optimal drug testing conditions was established to test compounds on early and late LiS worms. The library was screened in 96-well format assays using praziquantel (PZQ) as a positive control. Primary screening allowed a 5.9% hit rate and generated two confirmed hits on adult worms; a prophylactic antianginal agent and an antihistaminic drug. CONCLUSION: With this standardized and reliable in vitro assay, important S. mansoni developmental stages up to LiS worms can be generated and cultured over an extended period. When exposed to a subset of the NCATS Pharmaceutical Collection, 3 compounds yielded a defined anti-schistosomal phenotype on juvenile worms. Translation of activity on perfused adult S. mansoni worms was achieved only for perhexiline (a prophylactic antianginal agent) and astemizole (an antihistaminic drug).


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Schistosoma mansoni/efectos de los fármacos , Esquistosomicidas/farmacología , Animales , Astemizol/farmacología , Técnicas In Vitro , Perhexilina/farmacología , Schistosoma mansoni/crecimiento & desarrollo , Esquistosomiasis mansoni/tratamiento farmacológico
5.
Sci Rep ; 11(1): 6725, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762619

RESUMEN

The recent global pandemic of the Coronavirus disease 2019 (COVID-19) caused by the new coronavirus SARS-CoV-2 presents an urgent need for the development of new therapeutic candidates. Many efforts have been devoted to screening existing drug libraries with the hope to repurpose approved drugs as potential treatments for COVID-19. However, the antiviral mechanisms of action of the drugs found active in these phenotypic screens remain largely unknown. In an effort to deconvolute the viral targets in pursuit of more effective anti-COVID-19 drug development, we mined our in-house database of approved drug screens against 994 assays and compared their activity profiles with the drug activity profile in a cytopathic effect (CPE) assay of SARS-CoV-2. We found that the autophagy and AP-1 signaling pathway activity profiles are significantly correlated with the anti-SARS-CoV-2 activity profile. In addition, a class of neurology/psychiatry drugs was found to be significantly enriched with anti-SARS-CoV-2 activity. Taken together, these results provide new insights into SARS-CoV-2 infection and potential targets for COVID-19 therapeutics, which can be further validated by in vivo animal studies and human clinical trials.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/metabolismo , Minería de Datos/métodos , Factor de Transcripción AP-1/metabolismo , Animales , Antivirales/farmacología , Autofagia/efectos de los fármacos , Autofagia/fisiología , COVID-19/epidemiología , COVID-19/genética , Chlorocebus aethiops , Bases de Datos Genéticas , Aprobación de Drogas , Evaluación Preclínica de Medicamentos/métodos , Reposicionamiento de Medicamentos/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Terapia Molecular Dirigida , Pandemias , SARS-CoV-2/aislamiento & purificación , Células Vero
6.
Nat Biotechnol ; 39(6): 747-753, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33623157

RESUMEN

Computational approaches for drug discovery, such as quantitative structure-activity relationship, rely on structural similarities of small molecules to infer biological activity but are often limited to identifying new drug candidates in the chemical spaces close to known ligands. Here we report a biological activity-based modeling (BABM) approach, in which compound activity profiles established across multiple assays are used as signatures to predict compound activity in other assays or against a new target. This approach was validated by identifying candidate antivirals for Zika and Ebola viruses based on high-throughput screening data. BABM models were then applied to predict 311 compounds with potential activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of the predicted compounds, 32% had antiviral activity in a cell culture live virus assay, the most potent compounds showing a half-maximal inhibitory concentration in the nanomolar range. Most of the confirmed anti-SARS-CoV-2 compounds were found to be viral entry inhibitors and/or autophagy modulators. The confirmed compounds have the potential to be further developed into anti-SARS-CoV-2 therapies.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Ensayos Analíticos de Alto Rendimiento/métodos , SARS-CoV-2/efectos de los fármacos , COVID-19/genética , COVID-19/virología , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Humanos , SARS-CoV-2/patogenicidad
7.
J Ethnopharmacol ; 219: 213-221, 2018 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-29551453

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: For many years, Guangzhou University of Chinese Medicine has been successfully using the empirical Wenyang Huoxue Jiedu formula (WHJF) to treat coronary heart disease. Modern theories of acute coronary syndrome mainly focus on rupture of thin-cap fibroatheromas (TCFAs), which is closely related to the release of vascular endothelial growth factor and its receptor (VEGF/VEGFR). AIM OF STUDY: We investigated the effects of WHJF on the formation of TCFA plaques and the potential mechanism (VEGF/VEGFR signaling pathway). MATERIALS AND METHODS: For the in vivo experiments, WHJF was administered to ApoE-/- mice, as a model of TCFA plaque formation. Aortic sections of the mice were obtained, and the vulnerability index and new vessel density of plaques were calculated by the Movat staining assay and immunohistochemistry kit, respectively. Protein and mRNA expression levels of VEGF/VEGFR in aortas were assayed by capillary electrophoresis immunoassay and quantitative real-time polymerase chain reaction analyses. In vitro, WHJF serum was produced in rats on the fourth day 2 h after the first administration of different concentrations of WHJF. Proliferation, migration, and lumen formation ability of human umbilical vein endothelial cells (HUVECs) treated with sera from these rats were assayed by the CKK-8 kit, Transwell plates, and Matrigel assay, respectively. Protein and mRNA expression levels of signaling molecules in the VEGF/VEGFR pathways were also examined. RESULTS: In vivo, the vulnerability index and new vessel density of plaques in the WHJF group were lower than those values in the blank control group (P < 0.05). No differences were found between the groups in the expression levels of VEGF/VEGFR (P > 0.05). In vitro, the proliferation, migration, and tube formation of HUVECs in the high-dose WHJF group were reduced compared to the control group (P < 0.05). This finding was in agreement with the downregulation of VEGFR-2 and pERK (P < 0.05). The mRNA expression of signaling molecules showed no difference between the groups (P > 0.05). CONCLUSIONS: WHJF inhibits TCFA formation by influencing the VEGF/VEGFR signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Placa Aterosclerótica/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
SLAS Technol ; 23(3): 217-225, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28922619

RESUMEN

Angiogenesis is an important hallmark of cancer, contributing to tumor formation and metastasis. In vitro angiogenesis models for analyzing tube formation serve as useful tools to study these processes. However, current in vitro co-culture models using primary cells have limitations in usefulness and consistency. Therefore, in the present study, an in vitro co-culture assay system was optimized in a 1536-well format for high-throughput screening using human telomerase reverse transcriptase (hTERT)-immortalized mesenchymal stem cells and aortic endothelial cells. The National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection (NPC) library containing 2816 drugs was evaluated using the in vitro co-culture assay. From the screen, 35 potent inhibitors (IC50 ≤1 µM) were identified, followed by 15 weaker inhibitors (IC50 1-50 µM). Moreover, many known angiogenesis inhibitors were identified, such as topotecan, docetaxel, and bortezomib. Several potential novel angiogenesis inhibitors were also identified from this study, including thimerosal and podofilox. Among the inhibitors, some compounds were proved to be involved in the hypoxia-inducible factor-1α (HIF-1α) and the nuclear factor-kappa B (NF-κB) pathways. The co-culture model developed by using hTERT-immortalized cell lines described in this report provides a consistent and robust in vitro system for antiangiogenic drug screening.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Evaluación Preclínica de Medicamentos/métodos , Endotelio Vascular/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Células Madre Mesenquimatosas/patología , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Bortezomib/farmacología , Línea Celular Transformada , Técnicas de Cocultivo , Docetaxel/farmacología , Endotelio Vascular/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , FN-kappa B/metabolismo , Transducción de Señal , Telomerasa/genética , Topotecan/farmacología
9.
Endocrinology ; 159(2): 744-753, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216352

RESUMEN

The estrogen-related receptor α (ERRα) is an orphan nuclear receptor (NR) that plays a role in energy homeostasis and controls mitochondrial oxidative respiration. Increased expression of ERRα in certain ovarian, breast, and colon cancers has a negative prognosis, indicating an important role for ERRα in cancer progression. An interaction between ERRα and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) has also recently been shown to regulate an enzyme in the ß-oxidation of free fatty acids, thereby suggesting that ERRα plays an important role in obesity and type 2 diabetes. Therefore, it would be prudent to identify compounds that can act as activators of ERRα. In this study, we screened ∼10,000 (8311 unique) compounds, known as the Tox21 10K collection, to identify agonists of ERRα. We performed this screen using two stably transfected HEK 293 cell lines, one with the ERRα-reporter alone and the other with both ERRα-reporter and PGC-1α expression vectors. After the primary screening, we identified more than five agonist clusters based on compound structural similarity analysis (e.g., statins). By examining the activities of the confirmed ERRα modulators in other Tox21 NR assays, eliminating those with promiscuous NR activity, and performing follow-up assays (e.g., small interfering RNA knockdown), we identified compounds that might act as endocrine disrupters through effects on ERRα signaling. To our knowledge, this study is the first comprehensive analysis in discovering potential endocrine disrupters that affect the ERRα signaling pathway.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Receptores de Estrógenos/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Regiones Promotoras Genéticas , Receptores de Estrógenos/genética , Transducción de Señal/efectos de los fármacos , Receptor Relacionado con Estrógeno ERRalfa
10.
J Biomol Screen ; 21(10): 1112-1124, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27647668

RESUMEN

Human neuronal cells differentiated from induced pluripotent cells have emerged as a new model system for the study of disease pathophysiology and evaluation of drug efficacy. Differentiated neuronal cells are more similar in genetics and biological content to human brain cells than other animal disease models. However, culture of neuronal cells in assay plates requires a labor-intensive procedure of plate precoating, hampering its applications in high-throughput screening (HTS). We developed a simplified method with one-step seeding of neural stem cells in assay plates by supplementing the medium with a recombinant human vitronectin (VTN), thus avoiding plate precoating. Robust results were obtained from cell viability, calcium response, and neurite outgrowth assays using this new method. Our data demonstrate that this approach greatly simplifies high-throughput assays using neuronal cells differentiated from human stem cells for translational research.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Células-Madre Neurales/citología , Vitronectina/farmacología , Diferenciación Celular/genética , Medios de Cultivo/farmacología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos
11.
PLoS One ; 10(7): e0130796, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26177200

RESUMEN

Phenotypic assays have a proven track record for generating leads that become first-in-class therapies. Whole cell assays that inform on a phenotype or mechanism also possess great potential in drug repositioning studies by illuminating new activities for the existing pharmacopeia. The National Center for Advancing Translational Sciences (NCATS) pharmaceutical collection (NPC) is the largest reported collection of approved small molecule therapeutics that is available for screening in a high-throughput setting. Via a wide-ranging collaborative effort, this library was analyzed in the Open Innovation Drug Discovery (OIDD) phenotypic assay modules publicly offered by Lilly. The results of these tests are publically available online at www.ncats.nih.gov/expertise/preclinical/pd2 and via the PubChem Database (https://pubchem.ncbi.nlm.nih.gov/) (AID 1117321). Phenotypic outcomes for numerous drugs were confirmed, including sulfonylureas as insulin secretagogues and the anti-angiogenesis actions of multikinase inhibitors sorafenib, axitinib and pazopanib. Several novel outcomes were also noted including the Wnt potentiating activities of rotenone and the antifolate class of drugs, and the anti-angiogenic activity of cetaben.


Asunto(s)
Reposicionamiento de Medicamentos , Línea Celular Tumoral , Aprobación de Drogas , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Fenotipo , Bibliotecas de Moléculas Pequeñas/farmacología
12.
Anal Bioanal Chem ; 407(18): 5343-51, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25925857

RESUMEN

The endoplasmic reticulum (ER), a multifunctional organelle, plays a central role in cellular signaling, development, and stress response. Dysregulation of ER homeostasis has been associated with human diseases, such as cancer, inflammation, and diabetes. A broad spectrum of stressful stimuli including hypoxia as well as a variety of pharmacological agents can lead to the ER stress response. In this study, we have developed a stable ER stress reporter cell line that stably expresses a ß-lactamase reporter gene under the control of the ER stress response element (ESRE) present in the glucose-regulated protein, 78 kDa (GRP78) gene promoter. This assay has been optimized and miniaturized into a 1536-well plate format. In order to identify clinically used drugs that induce ER stress response, we screened approximately 2800 drugs from the NIH Chemical Genomics Center Pharmaceutical Collection (NPC library) using a quantitative high-throughput screening (qHTS) platform. From this study, we have identified several known ER stress inducers, such as 17-AAG (via HSP90 inhibition), as well as several novel ER stress inducers such as AMI-193 and spiperone. The confirmed drugs were further studied for their effects on the phosphorylation of eukaryotic initiation factor 2α (eIF2α), the X-box-binding protein (XBP1) splicing, and GRP78 gene expression. These results suggest that the ER stress inducers identified from the NPC library using the qHTS approach could shed new lights on the potential therapeutic targets of these drugs.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Línea Celular , Chaperón BiP del Retículo Endoplásmico , Genes Reporteros , Células HeLa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Elementos de Respuesta , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
13.
Sci Rep ; 4: 3743, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24434750

RESUMEN

Control of parasite transmission is critical for the eradication of malaria. However, most antimalarial drugs are not active against P. falciparum gametocytes, responsible for the spread of malaria. Consequently, patients can remain infectious for weeks after the clearance of asexual parasites and clinical symptoms. Here we report the identification of 27 potent gametocytocidal compounds (IC50 < 1 µM) from screening 5,215 known drugs and compounds. All these compounds were active against three strains of gametocytes with different drug sensitivities and geographical origins, 3D7, HB3 and Dd2. Cheminformatic analysis revealed chemical signatures for P. falciparum sexual and asexual stages indicative of druggability and suggesting potential targets. Torin 2, a top lead compound (IC50 = 8 nM against gametocytes in vitro), completely blocked oocyst formation in a mouse model of transmission. These results provide critical new leads and potential targets to expand the repertoire of malaria transmission-blocking reagents.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Descubrimiento de Drogas , Animales , Línea Celular , Química Farmacéutica , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos/métodos , Resistencia a Medicamentos , Humanos , Ratones , Estructura Molecular , Plasmodium falciparum/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas
14.
J Chem Inf Model ; 51(10): 2474-81, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-21905670

RESUMEN

The human cytochrome P450 (CYP450) isozymes are the most important enzymes in the body to metabolize many endogenous and exogenous substances including environmental toxins and therapeutic drugs. Any unnecessary interactions between a small molecule and CYP450 isozymes may raise a potential to disarm the integrity of the protection. Accurately predicting the potential interactions between a small molecule and CYP450 isozymes is highly desirable for assessing the metabolic stability and toxicity of the molecule. The National Institutes of Health Chemical Genomics Center (NCGC) has screened a collection of over 17,000 compounds against the five major isozymes of CYP450 (1A2, 2C9, 2C19, 2D6, and 3A4) in a quantitative high throughput screening (qHTS) format. In this study, we developed support vector classification (SVC) models for these five isozymes using a set of customized generic atom types. The CYP450 data sets were randomly split into equal-sized training and test sets. The optimized SVC models exhibited high predictive power against the test sets for all five CYP450 isozymes with accuracies of 0.93, 0.89, 0.89, 0.85, and 0.87 for 1A2, 2C9, 2C19, 2D6, and 3A4, respectively, as measured by the area under the receiver operating characteristic (ROC) curves. The important atom types and features extracted from the five models are consistent with the structural preferences for different CYP450 substrates reported in the literature. We also identified novel features with significant discerning power to separate CYP450 actives from inactives. These models can be useful in prioritizing compounds in a drug discovery pipeline or recognizing the toxic potential of environmental chemicals.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Máquina de Vectores de Soporte , Humanos , Isoenzimas/metabolismo , Unión Proteica , Curva ROC , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
15.
J Biomol Screen ; 16(6): 618-27, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21482722

RESUMEN

The thyroid hormone receptors (TR) are members of the nuclear hormone receptor (NHR) superfamily that regulate development, growth, and metabolism. Upon ligand binding, TR releases bound corepressors and recruits coactivators to modulate target gene expression. Steroid receptor coactivator 2 (SRC2) is an important coregulator that interacts with TRß to activate gene transcription. To identify novel inhibitors of the TRß and SRC2 interaction, the authors performed a quantitative high-throughput screen (qHTS) of a TRß-SRC2 fluorescence polarization assay against more than 290 000 small molecules. The qHTS assayed compounds at 6 concentrations up to 92 µM to generate titration-response curves and determine the potency and efficacy of all compounds. The qHTS data set enabled the characterization of actives for structure-activity relationships as well as for potential artifacts such as fluorescence interference. Selected qHTS actives were tested in the screening assay using fluoroprobes labeled with Texas Red or fluorescein. The retest identified 19 series and 4 singletons as active in both assays with 40% or greater efficacy, free of compound interference, and not toxic to mammalian cells. Selected compounds were tested as independent samples, and a methylsulfonylnitrobenzoate series inhibited the TRß-SRC2 interaction with 5 µM IC(50). This series represents a new class of thyroid hormone receptor-coactivator modulators.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Coactivador 2 del Receptor Nuclear/metabolismo , Péptidos/metabolismo , Receptores beta de Hormona Tiroidea/metabolismo , Células Cultivadas , Evaluación Preclínica de Medicamentos , Humanos , Coactivador 2 del Receptor Nuclear/antagonistas & inhibidores , Coactivador 2 del Receptor Nuclear/química , Péptidos/síntesis química , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Receptores beta de Hormona Tiroidea/antagonistas & inhibidores
16.
Sci Transl Med ; 3(80): 80ps16, 2011 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-21525397

RESUMEN

Small-molecule compounds approved for use as drugs may be "repurposed" for new indications and studied to determine the mechanisms of their beneficial and adverse effects. A comprehensive collection of all small-molecule drugs approved for human use would be invaluable for systematic repurposing across human diseases, particularly for rare and neglected diseases, for which the cost and time required for development of a new chemical entity are often prohibitive. Previous efforts to build such a comprehensive collection have been limited by the complexities, redundancies, and semantic inconsistencies of drug naming within and among regulatory agencies worldwide; a lack of clear conceptualization of what constitutes a drug; and a lack of access to physical samples. We report here the creation of a definitive, complete, and nonredundant list of all approved molecular entities as a freely available electronic resource and a physical collection of small molecules amenable to high-throughput screening.


Asunto(s)
Aprobación de Drogas , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Genómica , National Institutes of Health (U.S.) , Preparaciones Farmacéuticas , Conducta Cooperativa , Evaluación Preclínica de Medicamentos/métodos , Genómica/métodos , Humanos , Informática Médica , Preparaciones Farmacéuticas/química , Control de Calidad , Estados Unidos
17.
Toxicol Appl Pharmacol ; 252(3): 250-8, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21362439

RESUMEN

The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K(+)) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially leads to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC(50) potencies ranging from 0.26 to 22µM. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC(50) value of 260nM in the thallium influx assay and 80nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Compuestos de Amonio Cuaternario/farmacología , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/prevención & control , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Concentración 50 Inhibidora , Técnicas de Placa-Clamp , Compuestos de Amonio Cuaternario/efectos adversos , Relación Estructura-Actividad
18.
Curr Top Med Chem ; 9(13): 1181-93, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19807664

RESUMEN

The NIH Chemical Genomics Center (NCGC) was the inaugural center of the Molecular Libraries and Screening Center Network (MLSCN). Along with the nine other research centers of the MLSCN, the NCGC was established with a primary goal of bringing industrial technology and experience to empower the scientific community with small molecule compounds for use in their research. We intend this review to serve as 1) an introduction to the NCGC standard operating procedures, 2) an overview of several of the lessons learned during the pilot phase and 3) a review of several of the innovative discoveries reported during the pilot phase of the MLSCN.


Asunto(s)
Química Farmacéutica , Evaluación Preclínica de Medicamentos , Genómica , Ensayos Analíticos de Alto Rendimiento , National Institutes of Health (U.S.) , Bibliotecas de Moléculas Pequeñas , Proyectos Piloto , Estados Unidos
19.
Anal Biochem ; 394(1): 30-8, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19583963

RESUMEN

Long QT syndrome, either inherited or acquired from drug treatments, can result in ventricular arrhythmia (torsade de pointes) and sudden death. Human ether-a-go-go-related gene (hERG) channel inhibition by drugs is now recognized as a common reason for the acquired form of long QT syndrome. It has been reported that more than 100 known drugs inhibit the activity of the hERG channel. Since 1997, several drugs have been withdrawn from the market due to the long QT syndrome caused by hERG inhibition. Food and Drug Administration regulations now require safety data on hERG channels for investigative new drug (IND) applications. The assessment of compound activity on the hERG channel has now become an important part of the safety evaluation in the process of drug discovery. During the past decade, several in vitro assay methods have been developed and significant resources have been used to characterize hERG channel activities. However, evaluation of compound activities on hERG have not been performed for large compound collections due to technical difficulty, lack of throughput, and/or lack of biological relevance to function. Here we report a modified form of the FluxOR thallium flux assay, capable of measuring hERG activity in a homogeneous 1536-well plate format. To validate the assay, we screened a 7-point dilution series of the LOPAC 1280 library collection and reported rank order potencies of ten common hERG inhibitors. A correlation was also observed for the hERG channel activities of 10 known hERG inhibitors determined in this thallium flux assay and in the patch clamp experiment. Our findings indicate that this thallium flux assay can be used as an alternative method to profile large-volume compound libraries for compound activity on the hERG channel.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Animales , Recuento de Células , Línea Celular , Colorantes/metabolismo , Dimetilsulfóxido/farmacología , Espacio Extracelular/metabolismo , Humanos , Técnicas de Placa-Clamp , Reproducibilidad de los Resultados , Talio/metabolismo
20.
Toxicol Sci ; 112(1): 153-63, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19502547

RESUMEN

Cellular metabolism depends on the availability of oxygen and the major regulator of oxygen homeostasis is hypoxia-inducible factor 1 (HIF-1), a highly conserved transcription factor that plays an essential role in cellular and systemic homeostatic responses to hypoxia. HIF-1 is a heterodimeric transcription factor composed of hypoxia-inducible HIF-1alpha and constitutively expressed HIF-1beta. Under hypoxic conditions, the two subunits dimerize, allowing translocation of the HIF-1 complex to the nucleus where it binds to hypoxia-response elements (HREs) and activates expression of target genes implicated in angiogenesis, cell growth, and survival. The HIF-1 pathway is essential to normal growth and development, and is involved in the pathophysiology of cancer, inflammation, and ischemia. Thus, there is considerable interest in identifying compounds that modulate the HIF-1 signaling pathway. To assess the ability of environmental chemicals to stimulate the HIF-1 signaling pathway, we screened a National Toxicology Program collection of 1408 compounds using a cell-based beta-lactamase HRE reporter gene assay in a quantitative high-throughput screening (qHTS) format. Twelve active compounds were identified. These compounds were tested in a confirmatory assay for induction of vascular endothelial growth factor, a known hypoxia target gene, and confirmed compounds were further tested for their ability to mimic the effect of a reduced-oxygen environment on hypoxia-regulated promoter activity. Based on this testing strategy, three compounds (o-phenanthroline, iodochlorohydroxyquinoline, cobalt sulfate heptahydrate) were confirmed as hypoxia mimetics, whereas two compounds (7-diethylamino-4-methylcoumarin and 7,12-dimethylbenz(a)anthracence) were found to interact with HIF-1 in a manner different from hypoxia. These results demonstrate the effectiveness of qHTS in combination with secondary assays for identification of HIF-1alpha inducers and for distinguishing among inducers based on their pattern of activated hypoxic target genes. Identification of environmental compounds having HIF-1alpha activation activity in cell-based assays may be useful for prioritizing chemicals for further testing as hypoxia-response inducers in vivo.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , Línea Celular , Clioquinol/farmacología , Cobalto/farmacología , Evaluación Preclínica de Medicamentos , Genes Reporteros , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fenantrolinas/farmacología , Transducción de Señal , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA