Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theriogenology ; 197: 94-100, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36476507

RESUMEN

The aim of this study was to investigate the effects of melatonin (MLT), reduced glutathione (GSH) and vitamin E (Vit. E) or their combinations on semen cryopreservation of Mediterranean buffalo. The quality parameters such as viability, abnormality rate, motility, structural integrity and the antioxidant capacity of frozen-thawed sperm were evaluated. The efficiency of frozen-thawed sperms in performing their functions was further analyzed by in vitro fertilization (IVF). In those separately supplemented groups, 0.2 mg/mL MLT, 0.2 mM GSH and 0.4 mg/mL Vit. E had the best effect on antioxidant capacity, kinetics and morphology, respectively. In addition, the cleavage, blastocyst and hatching blastocyst rates of IVF embryos were higher in 0.2 mg/mL MLT, 0.2 mM GSH, 0.2 and 0.4 mg/mL Vit. E groups than the blank control. Among the three combination groups, the kinetics and structure integrity of frozen-thawed sperms, cleavage, blastocyst and hatching blastocyst rates of IVF embryos were higher in 0.4 mg/mL Vit. E plus 0.2 mg/mL MLT group than the blank control group, revealed that this combination had comprehensive protection on frozen-thawed sperm of Mediterranean buffalo. These results support to develop special semen freezing extender containing an optimal choice of MLT, GSH and Vit. E, and to enhance the efficiency of frozen-thawed sperm of Mediterranean buffalo for IVF.


Asunto(s)
Bison , Melatonina , Preservación de Semen , Masculino , Animales , Semen , Vitamina E/farmacología , Antioxidantes/farmacología , Búfalos , Melatonina/farmacología , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Motilidad Espermática , Espermatozoides , Criopreservación/veterinaria , Criopreservación/métodos , Glutatión/farmacología
2.
ACS Synth Biol ; 11(2): 770-779, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35107265

RESUMEN

UDP-glycosyltransferase (UGT)-mediated glycosylation is a common modification in triterpene saponins, which exhibit a wide range of bioactivities and important pharmacological effects. However, few UGTs involved in saponin biosynthesis have been identified, limiting the biosynthesis of saponins. In this study, an efficient heterologous expression system was established for evaluating the UGT-mediated glycosylation process of triterpene saponins. Six UGTs (UGTPn17, UGTPn42, UGTPn35, UGTPn87, UGTPn19, and UGTPn12) from Panax notoginseng were predicted and found to be responsible for efficient and direct enzymatic biotransformation of 21 triterpenoid saponins via 26 various glycosylation reactions. Among them, UGTPn87 exhibited promiscuous sugar-donor specificity of UDP-glucose (UDP-Glc) and UDP-xylose (UDP-Xyl) by catalyzing the elongation of the second sugar chain at the C3 or/and C20 sites of protopanaxadiol-type saponins with a UDP-Glc or UDP-Xyl donor, as well as at the C20 site of protopanaxadiol-type saponins with a UDP-Glc donor. Two new saponins, Fd-Xyl and Fe-Xyl, were generated by catalyzing the C3-O-Glc xylosylations of notoginsenoside Fd and notoginsenoside Fe when incubated with UGTPn87. Moreover, the complete biosynthetic pathways of 17 saponins were elucidated, among which notoginsenoside L, vinaginsenoside R16, gypenoside LXXV, and gypenoside XVII were revealed in Panax for the first time. A yeast cell factory was constructed with a yield of Rh2 at 354.69 mg/L and a glycosylation ratio of 60.40% in flasks. Our results reveal the biosynthetic pathway of a group of saponins in P. notoginseng and provide a theoretical basis for producing rare and valuable saponins, promoting their industrial application in medicine and functional foods.


Asunto(s)
Ginsenósidos , Panax notoginseng , Panax , Saponinas , Triterpenos , Ginsenósidos/metabolismo , Glicosiltransferasas/metabolismo , Panax/metabolismo , Panax notoginseng/metabolismo , Uridina Difosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA