Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Phytomedicine ; 100: 154061, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35364561

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous disease with poor overall survival characterized by various genetic changes. The continuous activation of oncogenic pathways leads to the development of drug resistance and limits current therapeutic efficacy. Therefore, a multi-targeting inhibitor may overcome drug resistance observed in AML treatment. Recently, groups of flavonoids, such as flavones and flavonols, have been shown to inhibit a variety of kinase activities, which provides potential opportunities for further anticancer applications. PURPOSE: In this study, we evaluated the anticancer effects of flavonoid compounds collected from our in-house library and investigated their potential anticancer mechanisms by targeting multiple kinases for inhibition in AML cells. METHODS: The cytotoxic effect of the compounds was detected by cell viability assays. The kinase inhibitory activity of the selected compound was detected by kinase-based and cell-based assays. The binding conformation and interactions were investigated by molecular docking analysis. Flow cytometry was used to evaluate the cell cycle distribution and cell apoptosis. The protein and gene expression were estimated by western blotting and qPCR, respectively. RESULTS: In this study, an O-methylated flavonol (compound 11) was found to possess remarkable cytotoxic activity against AML cells compared to treatment in other cancer cell lines. The compound was demonstrated to act against multiple kinases, which play critical roles in survival signaling in AML, including FLT3, MNK2, RSK, DYRK2 and JAK2 with IC50 values of 1 - 2 µM. Compared to our previous flavonoid compounds, which only showed inhibitions against MNKs or FLT3, compound 11 exhibited multiple kinase inhibitory abilities. Moreover, compound 11 showed effectiveness in inhibiting internal tandem duplications of FLT3 (FLT3-ITDs), which accounts for 25% of AML cases. The interactions between compound 11 and targeted kinases were investigated by molecular docking analysis. Mechanically, compound 11 caused dose-dependent accumulation of leukemic cells at the G0/G1 phase and followed by the cells undergoing apoptosis. CONCLUSION: O-methylated flavonol, compound 11, can target multiple kinases, which may provide potential opportunities for the development of novel therapeutics for drug-resistant AMLs. This work provides a good starting point for further compound optimization.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Flavonoides/farmacología , Flavonoides/uso terapéutico , Flavonoles/farmacología , Flavonoles/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/farmacología , Tirosina Quinasa 3 Similar a fms/uso terapéutico
2.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299072

RESUMEN

Five new compounds, eupatodibenzofuran A (1), eupatodibenzofuran B (2), 6-acetyl-8-methoxy-2,2-dimethylchroman-4-one (3), eupatofortunone (4), and eupatodithiecine (5), have been isolated from the aerial part of Eupatorium fortunei, together with 11 known compounds (6‒16). Compounds 1 and 2 featured a new carbon skeleton with an unprecedented 1-(9-(4-methylphenyl)-6-methyldibe nzo[b,d]furan-2-yl)ethenone. Among the isolates, compound 1 exhibited potent inhibitory activity with IC50 values of 5.95 ± 0.89 and 5.55 ± 0.23 µM, respectively, against A549 and MCF-7 cells. The colony-formation assay demonstrated that compound 1 (5 µM) obviously decreased A549 and MCF-7 cell proliferation, and Western blot test confirmed that compound 1 markedly induced apoptosis of A549 and MCF-7 cells through mitochondrial- and caspase-3-dependent pathways.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Eupatorium/química , Neoplasias/tratamiento farmacológico , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Acetofenonas/química , Antineoplásicos Fitogénicos/química , Apoptosis , Benzofuranos/química , Proliferación Celular , Cromonas/química , Humanos , Estructura Molecular , Neoplasias/patología , Relación Estructura-Actividad , Células Tumorales Cultivadas
3.
J Enzyme Inhib Med Chem ; 36(1): 98-108, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33167727

RESUMEN

The STE20 kinase family is a complex signalling cascade that regulates cytoskeletal organisation and modulates the stress response. This signalling cascade includes various kinase mediators, such as TAOK1 and MAP4K5. The dysregulation of the STE20 kinase pathway is linked with cancer malignancy. A small-molecule inhibitor targeting the STE20 kinase pathway has therapeutic potential. In this study, a structure-based virtual screening (SBVS) approach was used to identify potential dual TAOK1 and MAP4K5 inhibitors. Enzymatic assays confirmed three potential dual inhibitors (>50% inhibition) from our virtual screening, and analysis of the TAOK1 and MAP4K5 binding sites indicated common interactions for dual inhibition. Compound 1 revealed potent inhibition of colorectal and lung cancer cell lines. Furthermore, compound 1 arrested cancer cells in the G0/G1 phase, which suggests the induction of apoptosis. Altogether, we show that the STE20 signalling mediators TAOK1 and MAP4K5 are promising targets for drug research.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
4.
Molecules ; 25(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339319

RESUMEN

Chalcones are responsible for biological activity throughout fruits, vegetables, and medicinal plants in preventing and treating a variety of inflammation-related diseases. However, their structure-activity relationship (SAR) in inhibiting inflammasome activation has not been explored. We synthesized numerous chalcones and determined their SAR on lipopolysaccharide (LPS)-primed ATP-induced NLRP3 inflammasome activation. 11Cha1 displayed good inhibitory activity on release reaction of caspase-1, IL-1ß, and IL-18. It significantly inhibited LPS-induced phosphorylation and proteolytic degradation of IĸB-α and nuclear translocation of NF-ĸB, but had little effect on mitogen-activated protein kinases (MAPKs) activities. Furthermore, 11Cha1 blocked LPS-induced up-regulation of NLRP3, pro-caspase-1, ASC, IL-18, and IL-1ß, indicating the suppression on priming step of inflammasome activation. ASC dimerization and oligomerization are considered to be direct evidence for inflammasome activation. 11Cha1 profoundly inhibited ATP-induced formation of ASC dimers, trimers, and oligomers, and the assembly of ASC, pro-caspase-1, and NLRP3 in inflammasome formation. Decrease of intracellular K+ levels is the common cellular activity elicited by all NLRP3 inflammasome activators. 11Cha1 substantially diminished ATP-mediated K+ efflux, confirming the anti-NLRP3 inflammasome activity of 11Cha1. In summary, the SAR of chalcone derivatives in anti-inflammasome activities was examined. Besides, 11Cha1 inhibited both priming and activation steps of NLRP3 inflammasome activation. It inhibited NF-ĸB activation and subsequently suppressed the up-regulation of NLRP3 inflammasome components including NLRP3, ASC, pro-caspase-1, pro-IL-18, and pro-IL-1ß. Next, 11Cha1 blocked ATP-mediated K+ efflux and suppressed the assembly and activation of NLRP3 inflammasome, leading to the inhibition of caspase-1 activation and proteolytic cleavage, maturation, and secretion of IL-1ß and IL-18.


Asunto(s)
Chalconas/farmacología , Inflamasomas/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Adenosina Trifosfato/farmacología , Caspasa 1/metabolismo , Línea Celular , Dimerización , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Piroptosis/efectos de los fármacos , Relación Estructura-Actividad
5.
Eur J Med Chem ; 192: 112193, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32151835

RESUMEN

Multitarget agents simultaneously trigger molecules in functionally complementary pathways, and are therefore considered to have potential in effectively treating Alzheimer's disease (AD), which has a complex pathogenetic mechanism. In this study, the HDAC inhibitor core is incorporated into the acetylcholine esterase (ACE) inhibitor acridine-derived moiety and resulted in compounds that exhibited higher class IIa HDAC (4, 5, 7, and 9)- and class IIb HDAC6-inhibiting activity when compared to the pan-HDAC inhibitor SAHA in clinical practice. One of these compounds, 11b, displayed greater selectivity toward HDAC6 than other isoform enzymes. In contrast, the activity of compound 6a was selective toward class IIa HDAC and HDAC6. These two compounds exhibited strong activity against Aß-aggregation as well as significantly disrupted Aß-oligomer. Additionally, 11b and 6a strongly inhibited AChE. These experimental findings demonstrate that compounds 11b and 6a are HDAC-Aß-aggregation-AChE inhibitors. Notably, they can enhance neurite outgrowth, but with no significant neurotoxicity. Further biological evaluation revealed the various cellular effects of multitarget compounds 11b and 6a, which have the potential to treat AD.


Asunto(s)
Acridinas/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Acetilcolinesterasa/metabolismo , Acridinas/síntesis química , Acridinas/química , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Ratones , Estructura Molecular , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/metabolismo , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , Células Tumorales Cultivadas
6.
Sci Rep ; 7(1): 3228, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28607401

RESUMEN

Histone deacetylases (HDAC) contain eighteen isoforms that can be divided into four classes. Of these isoform enzymes, class IIa (containing HDAC4, 5, 7 and 9) target unique substrates, some of which are client proteins associated with epigenetic control. Class IIa HDACs are reportedly associated with some neuronal disorders, making HDACs therapeutic targets for treating neurodegenerative diseases. Additionally, some reported HDAC inhibitors contain hydroxamate moiety that chelates with zinc ion to become the cofactor of HDAC enzymes. However, the hydroxamate functional group is shown to cause undesirable effects and has poor pharmacokinetic profile. This study used in silico virtual screening methodology to identify several nonhydroxamate compounds, obtained from National Cancer Institute database, which potentially inhibited HDAC4. Comparisons of the enzyme inhibitory activity against a panel of HDAC isoforms revealed these compounds had strong inhibitory activity against class IIa HDACs, but weak inhibitory activity against class I HDACs. Further analysis revealed that a single residue affects the cavity size between class I and class IIa HDACs, thus contributing to the selectivity of HDAC inhibitors discovered in this study. The discovery of these inhibitors presents the possibility of developing new therapeutic treatments that can circumvent the problems seen in traditional hydroxamate-based drugs.


Asunto(s)
Simulación por Computador , Evaluación Preclínica de Medicamentos/métodos , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/química , Biocatálisis/efectos de los fármacos , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Estructura Molecular , Unión Proteica , Dominios Proteicos
7.
Int J Mol Sci ; 18(7)2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28661460

RESUMEN

Dysregulated human monocytes/macrophages can synthesize and secrete matrix metalloproteinases (MMPs), which play important roles in the progression of sepsis. In this study, we investigated the effects and mechanism of a novel histone deacetylase (HDAC8) inhibitor, (E)-N-hydroxy-4-methoxy-2-(biphenyl-4-yl)cinnamide (WK2-16), on MMP-9 production and activation in stimulated human monocytic THP-1 cells. Our results demonstrated that the acetylation level of structural maintenance of chromosomes 3 (SMC3) was up-regulated by WK2-16 in THP-1 cells. Consistently, an in vitro enzyme study demonstrated that WK2-16 selectively inhibited HDAC8 activity. Moreover, the WK2-16 concentration dependently suppressed MMP-9-mediated gelatinolysis induced by tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS). Additionally, WK2-16 significantly inhibited both MMP-9 protein and mRNA expression without cellular toxicity. Nevertheless, WK2-16 suppressed the extracellular levels of interleukin (IL)-6 from LPS-stimulated THP-1 cells. For the signaling studies, WK2-16 had no effect on LPS/TLR4 downstream signaling pathways, such as the NF-κB and ERK/JNK/P38 MAPK pathways. On the other hand, WK2-16 enhanced the recruitment of acetylated Yin Yang 1 (YY1) with HDAC1. Finally, in vivo studies indicated that WK2-16 could reduce the serum levels of TNF-α and IL-6 in endotoxemic mice. These results suggested that HDAC8 inhibition might provide a novel therapeutic strategy of hypercytokinemia in sepsis.


Asunto(s)
Citocinas/efectos de los fármacos , Citocinas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/efectos de los fármacos , Histona Desacetilasas/metabolismo , Lipopolisacáridos/farmacología , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Represoras/efectos de los fármacos , Proteínas Represoras/metabolismo , Acetilación , Animales , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Ciclooxigenasa 2/efectos de los fármacos , Regulación hacia Abajo , Endotoxemia , Histona Desacetilasa 1/efectos de los fármacos , Humanos , Interleucina-6 , Proteínas Quinasas JNK Activadas por Mitógenos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , FN-kappa B/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/efectos de los fármacos , Sepsis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Células THP-1/efectos de los fármacos , Tubulina (Proteína)/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor de Transcripción YY1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/efectos de los fármacos
8.
J Ethnopharmacol ; 166: 18-22, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25764963

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Previously, we found a patient with an intractable motor tic disorder that could be ameliorated by the ground leaf juice of Clerodendrum inerme (CI). Furthermore, the ethanol extract of CI leaves effectively ameliorated methamphetamine-induced hyperlocomotion (MIH) in mice, an animal model mimicking the hyper-dopaminergic status of tic disorders/Tourette syndrome, schizophrenia, or obsessive-compulsive disorder. Here, we for the first time identified a constituent able to reduce MIH from the CI ethanol extract that might represent a novel lead for the treatment of such disorders. MATERIALS AND METHODS: The ethanol extract of CI was sub-divided into n-hexane, dichloromethane, n-butanol and water fractions. Using MIH alleviation as a bioassay, active compounds were identified in these fractions using silica gel chromatography, recrystallization and proton NMR spectroscopy. RESULTS: The dichloromethane and n-hexane fractions were active in the bioassay. Further subfractionation and re-crystallization resulted in an active compound that was identified to be hispidulin by proton NMR spectroscopy. Hispidulin significantly alleviated MIH in mice at doses that did not affect their spontaneous locomotor activity or performance in the rotarod test, a measure for motor coordination. CONCLUSIONS: Hispidulin is a flavonoid that has been isolated from several plants and reported to have anti-oxidative, anti-inflammatory and anti-cancer activities. Here, we for the very first time found that hispidulin can also alleviate MIH at doses that did not impair motor activity, suggesting a therapeutic potential of hispidulin in hyper-dopaminergic disorders.


Asunto(s)
Clerodendrum/química , Flavonas/farmacología , Metanfetamina/farmacología , Actividad Motora/efectos de los fármacos , Animales , Etnofarmacología/métodos , Flavonas/química , Masculino , Ratones , Ratones Endogámicos ICR , Fitoterapia/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología
9.
Artículo en Inglés | MEDLINE | ID: mdl-24883071

RESUMEN

Abnormal serum urate levels are recognized as a critical factor in the progression of several chronic diseases. To evaluate the antihyperuricemic effect of Davallia formosana, the inhibitory activities of 15 isolated phytochemicals, including five novel compounds of 6,8-dihydroxychromone-7-C- ß -d-glucopyranoside (1), 6,8,3',4'-tetrahydroxyflavanone-7-C- ß -d-glucopyranoside (2), 6,8,4'-trihydroxyflavanone-7-C- ß -d-glucopyranoside (3), 8-(2-pyrrolidinone-5-yl)-catechin-3-O- ß -d-allopyranoside (4), and epiphyllocoumarin-3-O- ß -d-allopyranoside (5), were examined against xanthine oxidase (XOD) and in a potassium oxonate-(PTO-) induced acute hyperuricemic mice model. The results indicated that compounds 3 and 5 significantly inhibited XOD activity in vitro and reduced serum uric acid levels in vivo. This is the first report providing new insights into the antihyperuricemic activities of flavonoid glycosides which can possibly be developed into potential hypouricemic agents.

10.
Chem Biol Interact ; 217: 1-8, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24727557

RESUMEN

WJ1376-1 and WJ1398-1 are new synthetic compounds developed based on the structure of the Chinese herbal medicine osthole. Previously, we reported that WJ1376-1 and WJ1398-1 can induce cell-cycle arrest by activating ATR kinase (ataxia telangiectasia and rad3 related kinase) and inhibiting the phosphorylation of Aurora A kinase. In this study, we determined that WJ1376-1 and WJ1398-1 strongly inhibited the migration and invasion in human colorectal cancer cells at concentrations as low as 1µM. In the transforming growth factor (TGF)-ß-induced epithelial-mesenchymal transition model, WJ1376-1 and WJ1398-1 potently downregulated the transcription factor Snail1, the mesenchymal protein vimentin, and matrix metalloprotease-9, but upregulated the epithelial protein E-cadherin. WJ1376-1 and WJ1398-1 also inhibited the TGF-ß-induced phosphorylation of Smad2 and of Akt at Ser 473, and the nuclear translocation of Smad2 was substantially lower in WJ1376-1- and WJ1398-1-treated cells than it was in control cells. In transient transfection experiments, we observed that WJ1376-1 and WJ1398-1 strongly inhibited TGF-ß-stimulated activity of a Smad reporter. Finally, WJ1376-1 and WJ1398-1 blocked TGF-ß-induced phosphorylation of the TGF-ß Type I receptor (TGF-ßRI). These results suggest that WJ1376-1 and WJ1398-1 inhibit cell migration and invasion by suppressing TGF-ßRI phosphorylation and subsequently hindering both Smad2 and phosphatidylinositol 3-kinase/Akt signaling pathways.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Cumarinas/farmacología , Ácidos Hidroxámicos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Smad2/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células HCT116 , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , ARN/química , ARN/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Smad2/genética , Factor de Crecimiento Transformador beta/metabolismo
11.
PLoS One ; 9(2): e88644, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24520409

RESUMEN

An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L.) Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes) was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+) concentration ([Ca(2+)]C) in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA) rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg) was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg) intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+) entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.


Asunto(s)
Flavonas/farmacología , Ácido Glutámico/metabolismo , Ácido Kaínico/toxicidad , Neuronas/metabolismo , Neuronas/patología , Neurotoxinas/toxicidad , 4-Aminopiridina/farmacología , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Terminaciones Nerviosas/efectos de los fármacos , Terminaciones Nerviosas/metabolismo , Neuronas/efectos de los fármacos , Cloruro de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Sodio/metabolismo , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
12.
Food Chem Toxicol ; 65: 356-63, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24440430

RESUMEN

The yam tuber is a traditional Chinese medicine used in long-term treatment as a juvenescent substance. The purified yam tuber's major water-soluble protein, dioscorin, and its protease hydrolysates have been reported to have several biological activities. In this study, d-galactose (Gal) was subcutaneously injected into the dorsal necks of BALB/c mice daily for 10weeks (Gal group) to induce oxidative stress. By the fifth week, 20 or 80mg dioscorin/kg was orally administered daily combined with a daily Gal injection until the end of the study. The plasma malondialdehyde (MDA) level and advanced glycation end-products obtained after dioscorin oral administrations were lower compared to the Gal group. In addition, the latency and swimming distance in the mice that received dioscorin administration were significantly improved compared to the Gal group in the Morris water maze. Dioscorin administration resulted in higher GSH levels and oxygen radical antioxidant capacity (ORAC) activity and lower MDA and inducible nitric oxide synthase (iNOS) levels in the brain compared to mice in the Gal group. These elevated antioxidant activities following oral administration of yam dioscorin in vivo may reflect traditional juvenescent uses with the potential for anti-aging treatments.


Asunto(s)
Dioscorea/química , Discapacidades para el Aprendizaje/prevención & control , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/farmacología , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/metabolismo , Células Cultivadas , Glutatión/metabolismo , Productos Finales de Glicación Avanzada/sangre , Humanos , Hígado/metabolismo , Masculino , Malondialdehído/metabolismo , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico Sintasa de Tipo II/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-24222778

RESUMEN

Activating transcription factor-(ATF-) 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002) is a Taiwanese propolin G (PPG) derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cells in vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP). GS-002 also induced endoplasmic reticular (ER) stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78), growth arrest- and DNA damage-inducible gene 153 (GADD153), phosphorylated eukaryotic initiation factor 2 α (eIF2 α ), phosphorylated protein endoplasmic-reticular-resident kinase (PERK), and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK) signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.

14.
Artículo en Inglés | MEDLINE | ID: mdl-23606881

RESUMEN

NBM-T-L-BMX-OS01 (BMX) was derived from the semisynthesis of osthole, isolated from Cnidium monnieri (L.) Cuss., and was identified to be a potent inhibitor of HDAC8. This study shows that HDAC8 is highly expressed in the pancreas and the brain. The function of HDAC8 in the brain has not been adequately studied. Because BMX enhances neurite outgrowth and cAMP response element-binding protein (CREB) activation, the effect of BMX on neural plasticity such as learning and memory is examined. To examine declarative and nondeclarative memory, a water maze, a passive one-way avoidance task, and a novel object recognition task were performed. Results from the water maze revealed that BMX and suberoylanilide-hydroxamic-acid-(SAHA-) treated rats showed shorter escape latency in finding the hidden platform. The BMX-treated animals spent more time in the target quadrant in the probe trial performance. An analysis of the passive one-way avoidance results showed that the BMX-treated animals stayed longer in the illuminated chamber by 1 day and 7 days after footshock. The novel object recognition task revealed that the BMX-treated animals showed a marked increase in the time spent exploring novel objects. Furthermore, BMX ameliorates scopolamine-(Sco-) induced learning and memory impairment in animals, indicating a novel role of BMX in learning and memory.

15.
Int J Mol Sci ; 13(5): 6073-6088, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22754350

RESUMEN

Thirteen polyphenolics were isolated from fresh pods of Caesalpinia pulcherrima using various methods of column chromatography. The structures of these polyphenolics were elucidated as gallic acid (1), methyl gallate (2), 6-O-galloyl-d-glucoside (3), methyl 6-O-galloyl-ß-d-glucoside (4), methyl 3,6-di-O-galloyl-α-d-glucopyranoside (5), gentisic acid 5-O-α-d-(6'-O-galloyl)glucopyranoside (6), guaiacylglycerol 4-O-ß-d-(6'-O-galloyl)glucopyranoside (7), 3-methoxy-4-hydroxyphenol 1-O-ß-d-(6'-O-galloyl) glucopyranoside (8), (+)-gallocatechin (9), (+)-catechin (10), (+)-gallocatechin 3-O-gallate (11), myricetin 3-rhamnoside (12), and ampelopsin (13). All isolated compounds were tested for their antioxidant activities in the 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, and peroxynitrite radicals scavenging assays. Among those compounds, 11, 12, and 2 exhibited the best DPPH-, hydroxyl-, and peroxynitrite radical-scavenging activities, respectively. Compound 7 is a new compound, and possesses better scavenging activities towards DPPH but has equivalent hydroxyl radical scavenging activity when compared to BHT. The paper is the first report on free radical scavenging properties of components of the fresh pods of Caesalpinia pulcherrima. The results obtained from the current study indicate that the free radical scavenging property of fresh pods of Caesalpinia pulcherrima may be one of the mechanisms by which this herbal medicine is effective in several free radical mediated diseases.


Asunto(s)
Antioxidantes/química , Caesalpinia/química , Depuradores de Radicales Libres/química , Polifenoles/química , Compuestos de Bifenilo/química , Catequina/química , Cromatografía/métodos , Ácido Gálico/química , Glucósidos/química , Picratos/química , Extractos Vegetales/química
16.
Artículo en Inglés | MEDLINE | ID: mdl-22844330

RESUMEN

Previously, we found a patient with intractable motor tic disorder, a spectrum of Tourette syndrome (TS), responsive to the ground leaf juice of Clerodendrum inerme (CI). Here, we examined the effect of the ethanol extract of CI leaves (CI extract) on animal behaviors mimicking TS, hyperlocomotion, and sensorimotor gating deficit. The latter is also observed in schizophrenic patients and can be reflected by a disruption of prepulse inhibition of acoustic startle response (PPI) in animal models induced by methamphetamine and NMDA channel blockers (ketamine or MK-801), based on hyperdopaminergic and hypoglutamatergic hypotheses, respectively. CI extract (10-300 mg/kg, i.p.) dose-dependently inhibited hyperlocomotion induced by methamphetamine (2 mg/kg, i.p.) and PPI disruptions induced by methamphetamine, ketamine (30 mg/kg, i.p.), and MK-801 (0.3 mg/kg, i.p.) but did not affect spontaneous locomotor activity, rotarod performance, and grip force. These results suggest that CI extract can relieve hyperlocomotion and improve sensorimotor gating deficit, supporting the therapeutic potential of CI for TS and schizophrenia.

17.
Artículo en Inglés | MEDLINE | ID: mdl-22046195

RESUMEN

HDAC inhibitors (HDACis) have been developed as promising anticancer agents in recent years. In this study, we synthesized and characterized a novel HDACi, termed NBM-HD-1. This agent was derived from the semisynthesis of propolin G, isolated from Taiwanese green propolis (TGP), and was shown to be a potent suppressor of tumor cell growth in human breast cancer cells (MCF-7 and MDA-MB-231) and rat glioma cells (C6), with an IC(50) ranging from 8.5 to 10.3 µM. Western blot demonstrated that levels of p21((Waf1/Cip1)), gelsolin, Ac-histone 4, and Ac-tubulin markedly increased after treatment of cancer cells with NBM-HD-1. After NBM-HD-1 treatment for 1-4 h, p-PTEN and p-AKT levels were markedly decreased. Furthermore, we also found the anticancer activities of NBM-HD-1 in regulating cell cycle regulators. Treatment with NBM-HD-1, p21((Waf1/Cip1)) gene expression had markedly increased while cyclin B1 and D1 gene expressions had markedly decreased. On the other hand, we found that NBM-HD-1 increased the expressions of tumor-suppressor gene p53 in a dose-dependent manner. Finally, we showed that NBM-HD-1 exhibited potent antitumor activity in a xenograft model. In conclusion, this study demonstrated that this compound, NBM-HD-1, is a novel and potent HDACi with anticancer activity in vitro and in vivo.

18.
J Agric Food Chem ; 59(14): 7743-51, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21682333

RESUMEN

Corni fructus is the fruit of Cornus officinalis Sieb. et Zucc. and has attracted much interest due to its traditional applications and active fraction that reportedly possesses antidiabetic effects. In this study, we isolated 12 compounds from Corni fructus including three flavonoids, two iridoid glycosides, three phenolic compounds, and two triterpenoids, together with cornuside (11) and 2-butoxybutanedioic acid (12). Chemical structures were identified by (1)H, (13)C NMR, DEPT, COSY, HSQC, and HMBC spectral analyses. Furthermore, the glucose uptake efficiency, messenger (m)RNA expression of phosphoenolpyruvate carboxykinase (PEPCK), and prevention of cytokine-mediated cytotoxicity in the presence of test agents were evaluated. While CH and CB significantly increased glucose uptake from muscle, compounds 3 and 8, each at 50 µM, significantly suppressed PEPCK mRNA expression. Finally, compound 5, at 50 and 100 µM, effectively attenuated ß-cell death. In conclusion, those compounds could contribute to the antihyperglycemic and ß-cell-protective actions of Corni fructus against diabetes mellitus.


Asunto(s)
Cornus/química , Diabetes Mellitus Tipo 1/prevención & control , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Línea Celular , Células Cultivadas , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animales de Enfermedad , Glucosa/metabolismo , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Células Secretoras de Insulina/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Ratas
19.
Eur J Med Chem ; 46(9): 4042-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21712146

RESUMEN

Our previous studies have demonstrated that osthole, a Chinese herbal compound, could be incorporated into the hydroxycinnamide scaffold of LBH-589, a potent HDAC inhibitor, as an effective hydrophobic cap; the resulting compounds showed significant potency against several HDAC isoforms. Here, we presented a series of osthole derivatives fused with the aliphatic-hydroxamate core of suberoylanilide hydroxamic acid (SAHA), a clinically-approved HDAC inhibitor. Several compounds showed potent activity against nuclear HDACs. Further assays against individual HDAC isoforms revealed that some compounds showed not only SAHA-like activity towards HDAC1, -4 and -6, they inhibited HDAC8 by log difference than SAHA and thus exhibited a broader HDAC inhibition spectrum. Among them, compound 6g showed potent antiproliferative effect on several human cancer cell lines.


Asunto(s)
Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/farmacología , Western Blotting , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/química , Histona Desacetilasas/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/química , Conformación Proteica , Espectrometría de Masa por Ionización de Electrospray , Vorinostat
20.
J Ethnopharmacol ; 136(1): 156-67, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21530633

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Taiwanese green propolis (TGP) extract contains a variety of chemical components and has proven to have broad-spectrum biological activities, including anticancer, antioxidant, and antimicrobial activities. Propolin G, an active anticancer component of TGP, was isolated and characterized in this study. Histone deacetylase inhibitors (HDACis) have been shown to be effective anticancer agents. The aim of this study was to develop a novel HDACi and investigate its anticancer mechanism. MATERIALS AND METHODS: NBM-HD-3, a novel HDACi, was derived from propolin G. Two brain cancer cell lines (c6 and DBTRG-05MG) were used in the anti-proliferation assay. NBM-HD-3 treated cells were analyzed by flow cytometry in the cell cycle assay. The gene expression of NBM-HD-3 treated cells was determined by real-time quantitative PCR. HDAC enzyme assay, confocal microscopy and Western blot assay were used to validate NMB-HD-3 as HDACi. Western blot assay was used for analyzing cell cycle modulation by PTEN and AKT. RESULTS: NBM-HD-3 was found to have potent anti-proliferative activity in brain cancer cells (rat C6 glioma and human DBTRG-05MG glioblastoma). Western blot analysis and HDAC enzyme assay indicated that NBM-HD-3 was an HDAC inhibitor. The Western blot data exhibited increased levels of p21, Ac-histone 3, Ac-histone 4, and Ac-tubulin after brain cancer cells being treated with NBM-HD-3. NBM-HD-3 also affected the cell cycle regulators such as p21 and cyclin B1. In the study for its anticancer mechanism, NBM-HD-3 was found to increase PTEN and AKT protein levels significantly, while decreasing p-PTEN and p-AKT levels markedly. CONCLUSION: This study demonstrated that the novel compound, NBM-HD-3, is a potent HDAC inhibitor. It produces anticancer activity through modulation of PTEN and AKT in brain cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Flavanonas/farmacología , Glioblastoma/tratamiento farmacológico , Glioma/tratamiento farmacológico , Histona Desacetilasas/metabolismo , Monoterpenos/farmacología , Própolis/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cumarinas/aislamiento & purificación , Cumarinas/farmacología , Cumarinas/uso terapéutico , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/uso terapéutico , Flavanonas/aislamiento & purificación , Flavanonas/uso terapéutico , Glioblastoma/enzimología , Glioma/enzimología , Humanos , Monoterpenos/aislamiento & purificación , Monoterpenos/uso terapéutico , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA