Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Food Sci ; 89(4): 2465-2481, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38380680

RESUMEN

Camellia seed oil (CO) has high nutritional value and multiple bioactivities. However, the specific anti-fatigue characteristics and the implied mechanism of CO have not yet been fully elucidated. Throughout this investigation, male C57BL/6J mice, aged 8 weeks, underwent exhaustive exercise with or without CO pretreatment (2, 4, and 6 mL/kg BW) for 28 days. CO could extend the rota-rod and running time, reduce blood urea nitrogen levels and serum lactic acid, and increase muscle and hepatic glycogen, adenosine triphosphate, and anti-oxidative indicators. Additionally, CO could upregulate the mRNA and Nrf2 protein expression levels, as well as enhance the levels of its downstream antioxidant enzymes and induce the myofiber-type transformation from fast to slow and attenuate the gut mechanical barrier. Moreover, CO could ameliorate gut dysbiosis by reducing Firmicutes to Bacteroidetes ratio at the phylum level, increasing the percentage of Alistipes, Alloprevotella, Lactobacillus, and Muribaculaceae, and decreasing the proportion of Dubosiella at the genus level. In addition, specific bacterial taxa, which were altered by CO, showed a significant correlation with partial fatigue-related parameters. These findings suggest that CO may alleviate fatigue by regulating antioxidant capacity, muscle fiber transformation, gut mechanical barrier, and gut microbial composition in mice. PRACTICAL APPLICATION: Our study revealed that camellia seed oil (CO) could ameliorate exercise-induced fatigue in mice by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice. Our results promote the application of CO as an anti-fatigue functional food that targets oxidative stress, myofiber-type transformation, and microbial community.


Asunto(s)
Camellia , Microbioma Gastrointestinal , Ratones , Masculino , Animales , Antioxidantes/farmacología , Microbioma Gastrointestinal/genética , Ratones Endogámicos C57BL , Fatiga/tratamiento farmacológico , Fatiga/metabolismo , Aceites de Plantas/farmacología , Bacteroidetes , Firmicutes , Fibras Musculares Esqueléticas
2.
J Hazard Mater ; 394: 122560, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32220704

RESUMEN

The high dosage of catalyst requirement and weak anti-interference ability limit current heterogeneous manganese (Mn) catalyst/peroxymonosulfate (PMS) systems to remediate the organic polluted wastewater in complicated environment. Inspired by the concept of atom economy, herein, a homogenous manganese complex bearing a cross-bridged cyclam ligand Mn(cbc)Cl2 (MnL, L = cbc = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane)) is capable of activating PMS for reactive brilliant red K-2BP (RBR K-2BP) degradation. The dosage of MnL for PMS activation was low, in a range of 0.38∼3.8 mg/L. The quenching experiments demonstrated that the degradation was a nonradical-controlled process. Using methyl phenyl sulfoxide (PMSO) as a probe, the dominated degradation process of substrate was via an oxygen transfer pathway. Moreover, a high-valent Mn-oxo [(O)MnVLCl2]+ was directly detected using electrospray ionization mass spectrometry (ESI/MS). This system showed excellent anti-interference ability to both anions and humic acid, a typical natural organic matter. The atom economy, represented by an index ((mg pollutant)/h/(g catalyst)), showed that MnL 22737 in PMS activation was much higher than those of Mn-based heterogeneous catalytic systems 67∼960 and was only behind that of iron-tetraamidomacrocyclic ligand Fe-TAML 59139. This work provides insights into designing an atom-economic Mn-based PMS activator for efficient treatments for organic pollutants in a complicated environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA