Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 318: 137963, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36708780

RESUMEN

Humic acid can effectively bind heavy metals and is a promising remediation agent for heavy metals-contaminated water and soil. Many successful applications of humic acid have been reported, but rarely studied the specific process and mechanism of heavy metal removal by humic acids from water and soil, especially the simultaneous application of coal-based and bio-based humic acids. In this work, two kinds of coal-based and bio-based humic acid materials (CHA and BHA) from weathered coal and rice husk were industrially produced and studied their Pb(II) adsorption and immobilization characteristics and mechanisms in water and soil. The batch adsorption experiments obtained the Pb(II) adsorption by CHA and BHA both were spontaneous and endothermic monolayer chemisorption and controlled by three rate-limiting steps (bulk, film, and pore) in the adsorption process. CHA and BHA had highly efficient Pb(II) adsorption capacities, obtained their maximum adsorption capacity was 201 and 188 mg g-1, respectively. In addition to the two main adsorption mechanisms of ion exchange and surface complexation, electrostatic interaction, precipitation reaction, and π-π interaction were also involved. Soil culture experiments showed that CHA and BHA both exhibited a highly efficient immobilization effect on Pb(II)-contaminated soil, and CHA and BHA had a better synergistic promotion effect. Compared with the CK soil, the content of DTPA-Pb(II) decreased by 10.2-13.2% and the content of RES-Pb(II) increased by 14-22% in soils treated with different humic acids. Ion exchange, complexation, precipitation, and electrostatic attraction promote the transformation of unstable Pb(II) to stable Pb(II), which was of great significance for the immobilization of Pb(II) in soil. Overall, CHA and BHA have the potential to be used as green, efficient, and promising adsorbents to remove and immobilize Pb(II) from wastewater and soil.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Sustancias Húmicas/análisis , Suelo , Plomo , Adsorción , Carbón Mineral , Contaminantes del Suelo/análisis
2.
Water Sci Technol ; 79(11): 2175-2184, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31318355

RESUMEN

The aim of this study was to reveal the mechanism of nitrogen and phosphorus adsorption by humic acids (HAs). HAs were extracted from weathered coal and used as adsorbents of urea-N and phosphate-P in water. The effect of different factors was considered, such as the initial concentration of urea-N and phosphate-P, temperature, and pH. The surface characteristics of the HAs were analyzed by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectrometry. The results of batch adsorption experiments showed high effectiveness for nitrogen adsorption, the kinetics fitted with the pseudo-second-order model, and the isotherm followed the Langmuir model. For phosphorus adsorption, the data fitted well with the Weber and Morris model and the adsorption isotherms followed both the Langmuir and Freundlich isotherm models. The experimental results indicated that the adsorption behavior of HAs was both an endothermic and spontaneous process. These findings can be used as a reference for the mitigation of non-point source pollution and the application of fertilizer in agriculture.


Asunto(s)
Sustancias Húmicas , Nitrógeno , Fósforo , Contaminantes Químicos del Agua , Adsorción , Carbón Mineral , Concentración de Iones de Hidrógeno , Cinética , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
3.
Pak J Pharm Sci ; 28(5 Suppl): 1881-6, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26525019

RESUMEN

Bio-augmentation is a promising technique for remediation of polluted soils. This study aimed to evaluate the bio-augmentation effect of Rhodobacter sphaeroides biofertilizer (RBF) on the bioremediation of total petroleum hydrocarbons (TPH) contaminated soil. A greenhouse pot experiment was conducted over a period of 120 days, three methods for enhancing bio-augmentation were tested on TPH contaminated soils, including single addition RBF, planting, and combining of RBF and three crop species, such as wheat (W), cabbage (C) and spinach (S), respectively. The results demonstrated that the best removal of TPH from contaminated soil in the RBF bio-augmentation rhizosphere soils was found to be 46.2%, 65.4%, 67.5% for W+RBF, C+RBF, S+RBF rhizosphere soils respectively. RBF supply impacted on the microbial community diversity (phospholipid fatty acids, PLFA) and the activity of soil enzymes, such as dehydrogenase (DH), alkaline phosphatase (AP) and urease (UR). There were significant difference among the soil only containing crude oil (CK), W, C and S rhizosphere soils and RBF bio-augmentation soils. Moreover, the changes were significantly distinct depended on crops species. It was concluded that the RBF is a valuable material for improving effect of remediation of TPH polluted soils.


Asunto(s)
Biodegradación Ambiental , Fertilizantes , Hidrocarburos/análisis , Petróleo/análisis , Plantas/metabolismo , Rhodobacter sphaeroides/metabolismo , Contaminantes del Suelo/análisis , Brassica/metabolismo , Ácidos Grasos/análisis , Fosfolípidos/análisis , Spinacia oleracea/metabolismo , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA