Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lipids Health Dis ; 22(1): 126, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563575

RESUMEN

INTRODUCTION: Hearing loss is a prevalent health concern, and dietary factors, such as fatty acid intake, may play a role in its development. The current study aimed to investigate the association between the intake of dietary fatty acids and hearing thresholds among U.S. adults. METHODS: The researchers examined data from the National Health and Nutrition Examination Survey (NHANES), including 7,623 participants with available dietary fatty acid intake and audiometry data. Dietary fatty acid intake was assessed using dietary recalls, and hearing thresholds were measured using pure-tone audiometry. Multivariate linear regression models and smoothing curve fitting were utilized to explore the associations between dietary fatty acid intake and hearing thresholds, adjusting for relevant covariates. RESULTS: This study reveals a direct association between both low and high frequency pure tone average (PTA) hearing thresholds and the dietary intake of total saturated fatty acids (SFAs) and total polyunsaturated fatty acids (PUFAs). Conversely, the intake of total monounsaturated fatty acids (MUFAs) demonstrates an inverted U-shaped correlation with low-frequency and high-frequency PTA hearing thresholds, having inflection points at 11.91 (energy (%)) and 10.88 (energy (%)), respectively. CONCLUSION: Dietary intake of certain fatty acids may influence hearing thresholds in adults.


Asunto(s)
Grasas de la Dieta , Ácidos Grasos , Adulto , Humanos , Encuestas Nutricionales , Ácidos Grasos Insaturados , Ácidos Grasos Monoinsaturados , Audición
2.
Biomaterials ; 230: 119606, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31806405

RESUMEN

Exosomes (Exos) of approximately 30-150 nm in diameters are the promising vehicles for therapeutic drugs. However, several challenges still exist in clinical applications, such as unsatisfied yield of exosomes, complicated labeling procedure and low drug loading efficiency. In this work, the gram-scale amount of high-purity urinary exosomes can be obtained from gastric cancer patients by non-invasive method. Passion fruit-like Exo-PMA/Au-BSA@Ce6 nanovehicles were fabricated by considerable freshly-urinary Exos loaded efficiently with multi-functionalized PMA/Au-BSA@Ce6 nanoparticles via instant electroporation strategy. In this system, prepared Exo-PMA/Au-BSA@Ce6 nanovehicles could be internalized into cancer cells effectively, and could delay the endocytosis of macrophages and prolong blood circulation time owing to its membrane structure and antigens. Under 633 nm laser irradiation and acidic condition, the structures of nanovehicles would be collapsed and tremendous PMA/Au-BSA@Ce6 nanoparticles could be released inside cancer cells, produced considerable singlet oxygen, inhibiting growth of tumor cells. In vivo experiment of MGC-803 tumor-bearing nude mice showed that prepared Exo-PMA/Au-BSA@Ce6 nanovehicles could target tumor cells with deep penetration and superior retention performance in tumors. This work reports a reliable conjugation-free labeling strategy for tracking exosomes harvested from human urine. Moreover, the integration of multifunctional nanoparticles with urinary Exos paves a versatile road for the development of cancer-targeted photodynamic therapy.


Asunto(s)
Exosomas , Nanopartículas , Passiflora , Fotoquimioterapia , Porfirinas , Animales , Línea Celular Tumoral , Frutas , Humanos , Ratones , Ratones Desnudos , Imagen Óptica , Fármacos Fotosensibilizantes
3.
Theranostics ; 9(12): 3443-3458, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281489

RESUMEN

Rationale: Recently, there is one-fifth of human deaths caused by cancer, leading to cancer treatment remains a hard nut to crack in the medical field. Therefore, as an emerging diagnostic technology, mesoporous nanomaterials-based drug delivery systems integrated diagnosis and therapy have aroused tremendous interest owing to visually targeting effect and superior therapy efficacy compared with traditional cancer treatment. Methods: In this work, we have successfully synthesized mesoporous carbon-gold hybrid nanozyme nanoprobes, whereby mesoporous carbon nanospheres were doped with small gold nanoparticles (OMCAPs) and further stabilized with a complex of reduced serum albumin and folic acid (rBSA-FA). After loading IR780 iodide, the OMCAPs@ rBSA-FA@IR780 nanoprobes were finally accomplished for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Results: Herein, acid oxidized MCAPs possessed large surface area and numerous -COOH groups, which could be used to surface chemically modify numerous targeting molecules and load abundant NIR dye IR780, as well as be acted as photothermal reagents to enhance photothermal therapy effect. In addition, the small Au NPs embedded in OMCAPs were utilized as nanozyme to catalyze H2O2 located in tumor cells to generate ·OH for intracellular oxidative damage of tumor. Besides, as a commonly used near-infrared (NIR) fluorescence dye, the loaded IR780 iodide could not only apply for real-time imaging, but also effectively enhance photo-thermal therapy (PTT) upon the 808 nm laser irradiation. Moreover, FA molecules could enhance the targeted efficiency of the nanoprobes to the gastric tumor site. According to the systematical study in vitro and in vivo, our fabricated nanoprobes based on carbon-gold hybrid (OMCAPs@ rBSA-FA@IR780) revealed excellent tumor targeting efficacy, long tumor retention and favorably therapeutic effect for tumor. Conclusion: All the results demonstrated that here synthesized probes exhibited excellently diagnostic and therapeutic performance, indicating our technology may potentially offer an outstanding strategy for tumor-targeting theranostics.


Asunto(s)
Indoles/química , Nanopartículas del Metal/uso terapéutico , Neoplasias , Nanomedicina Teranóstica/métodos , Animales , Carbono/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Oro/química , Humanos , Hipertermia Inducida , Indoles/uso terapéutico , Nanopartículas del Metal/química , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Imagen Óptica/métodos , Fotoquimioterapia/métodos
4.
Langmuir ; 35(30): 9858-9866, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31265783

RESUMEN

As a new type of 2D nanomaterial, MXene (transition metal carbide/nitride) nanosheets are already widely used in catalysis, sensing, and energy research. DNA is a popular sensing molecule. Compared to other 2D materials such as graphene oxide, MoS2, and WS2, few fundamental studies were carried out on DNA adsorption by MXene. Due to its exfoliation and delamination process, the surface of MXene is abundant in -F, -OH, and -O- groups, rendering the surface negatively charged and repelling DNA. In previous studies, surface modification of MXene was performed to promote DNA adsorption. Herein, Mn2+ was discovered to promote DNA adsorption on unmodified Ti2C MXene. Different from Ca2+ and Mg2+, Mn2+ can inverse the ζ-potential of the Ti2C MXene to positive. DNA mainly uses its phosphate backbone for adsorption, while its bases contribute significantly less. In addition, delayed DNA desorption was observed through the addition of inorganic phosphate due to the formation of manganese phosphate to gradually extract Mn2+ from the DNA/MXene complex. Finally, DNA-induced DNA desorption from the Ti2C MXene can hardly distinguish the complementary DNA from a random DNA, which is very different from that for graphene oxide. This difference is likely due to the distinct surface chemistry between the MXene and graphene oxide.


Asunto(s)
Carbono/química , ADN/química , Manganeso/química , Nanoestructuras/química , Oligonucleótidos/química , Titanio/química , Adsorción , Grafito/química , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA