Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Neurol ; 327: 113243, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32057797

RESUMEN

Mitochondrial dysfunction is a pivotal event in many neurodegenerative disease states including traumatic brain injury (TBI) and spinal cord injury (SCI). One possible mechanism driving mitochondrial dysfunction is glutamate excitotoxicity leading to Ca2+-overload in neuronal or glial mitochondria. Therapies that reduce calcium overload and enhance bioenergetics have been shown to improve neurological outcomes. Pioglitazone, an FDA approved compound, has shown neuroprotective properties following TBI and SCI, but the underlying mechanism(s) are unknown. We hypothesized that the interaction between pioglitazone and a novel mitochondrial protein called mitoNEET was the basis for neuroprotection following CNS injury. We discovered that mitoNEET is an important mediator of Ca2+-mediated mitochondrial dysfunction and show that binding mitoNEET with pioglitazone can prevent Ca2+-induced dysfunction. By utilizing wild-type (WT) and mitoNEET null mice, we show that pioglitazone mitigates mitochondrial dysfunction and provides neuroprotection in WT mice, though produces no restorative effects in mitoNEET null mice. We also show that NL-1, a novel mitoNEET ligand, is neuroprotective following TBI in both mice and rats. These results support the crucial role of mitoNEET for mitochondrial bioenergetics, its importance in the neuropathological sequelae of TBI and the necessity of mitoNEET for pioglitazone-mediated neuroprotection. Since mitochondrial dysfunction is a pathobiological complication seen in other diseases such as diabetes, motor neuron disease and cancer, targeting mitoNEET may provide a novel mitoceutical target and therapeutic intervention for diseases that expand beyond TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Metabolismo Energético/efectos de los fármacos , Proteínas de Unión a Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Pioglitazona/uso terapéutico , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Proteínas de Unión a Hierro/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Pioglitazona/farmacología , Ratas , Ratas Sprague-Dawley
2.
J Neurosci Res ; 96(10): 1677-1688, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30063076

RESUMEN

Traumatic brain injury (TBI) results in cognitive impairment, which can be long-lasting after moderate to severe TBI. Currently, there are no FDA-approved therapeutics to treat the devastating consequences of TBI and improve recovery. This study utilizes a prodrug of 2,4-dinitrophenol, MP201, a mitochondrial uncoupler with extended elimination time, that was administered after TBI to target mitochondrial dysfunction, a hallmark of TBI. Using a model of cortical impact in male C57/BL6 mice, MP201 (80 mg/kg) was provided via oral gavage 2-hr post-injury and daily afterwards. At 25-hr post-injury, mice were euthanized and the acute rescue of mitochondrial bioenergetics was assessed demonstrating a significant improvement in both the ipsilateral cortex and ipsilateral hippocampus after treatment with MP201. Additionally, oxidative markers, 4-hydroxyneneal and protein carbonyls, were reduced compared to vehicle animals after MP201 administration. At 2-weeks post-injury, mice treated with MP201 post-injury (80 mg/kg; q.d.) displayed significantly increased cortical sparing (p = .0059; 38% lesion spared) and improved cognitive outcome (p = .0133) compared to vehicle-treated mice. Additionally, vehicle-treated mice had significantly lower (p = .0019) CA3 neuron count compared to sham while MP201-treated mice were not significantly different from sham levels. These results suggest that acute mitochondrial dysfunction can be targeted to impart neuroprotection from reactive oxygen species, but chronic administration may have an added benefit in recovery. This study highlights the potential for safe, effective therapy by MP201 to alleviate negative outcomes of TBI.


Asunto(s)
2,4-Dinitrofenol/farmacología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Profármacos/farmacología , Desacopladores/farmacología , Animales , Lesiones Traumáticas del Encéfalo/inducido químicamente , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Reconocimiento en Psicología/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA