RESUMEN
Experience-driven synaptic plasticity is believed to underlie adaptive behavior by rearranging the way neuronal circuits process information. We have previously discovered that O-GlcNAc transferase (OGT), an enzyme that modifies protein function by attaching ß-N-acetylglucosamine (GlcNAc) to serine and threonine residues of intracellular proteins (O-GlcNAc), regulates food intake by modulating excitatory synaptic function in neurons in the hypothalamus. However, how OGT regulates excitatory synapse function is largely unknown. Here we demonstrate that OGT is enriched in the postsynaptic density of excitatory synapses. In the postsynaptic density, O-GlcNAcylation on multiple proteins increased upon neuronal stimulation. Knockout of the OGT gene decreased the synaptic expression of the AMPA receptor GluA2 and GluA3 subunits, but not the GluA1 subunit. The number of opposed excitatory presynaptic terminals was sharply reduced upon postsynaptic knockout of OGT. There were also fewer and less mature dendritic spines on OGT knockout neurons. These data identify OGT as a molecular mechanism that regulates synapse maturity.
Asunto(s)
Hipotálamo/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Potenciales Postsinápticos Excitadores/genética , Hipotálamo/citología , Ratones Noqueados , N-Acetilglucosaminiltransferasas/genética , Plasticidad Neuronal/genética , Terminales Presinápticos/metabolismo , Ratas , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/genética , Transmisión Sináptica/genéticaRESUMEN
Traumatic fear memories can be inhibited by behavioral therapy for humans, or by extinction training in rodent models, but are prone to recur. Under some conditions, however, these treatments generate a permanent effect on behavior, which suggests that emotional memory erasure has occurred. The neural basis for such disparate outcomes is unknown. We found that a central component of extinction-induced erasure is the synaptic removal of calcium-permeable α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) in the lateral amygdala. A transient up-regulation of this form of plasticity, which involves phosphorylation of the glutamate receptor 1 subunit of the AMPA receptor, defines a temporal window in which fear memory can be degraded by behavioral experience. These results reveal a molecular mechanism for fear erasure and the relative instability of recent memory.
Asunto(s)
Extinción Psicológica , Miedo/fisiología , Memoria/fisiología , Receptores AMPA/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Calcio/metabolismo , Condicionamiento Psicológico , Depresión Sináptica a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Glutamato/metabolismo , Tálamo/metabolismoRESUMEN
Spinal cord GluR2-lacking AMPA receptors (AMPARs) contribute to nociceptive hypersensitivity in persistent pain, but the molecular mechanisms underlying this event are not completely understood. We report that complete Freund's adjuvant (CFA)-induced peripheral inflammation induces synaptic GluR2 internalization in dorsal horn neurons during the maintenance of CFA-evoked nociceptive hypersensitivity. This internalization is initiated by GluR2 phosphorylation at Ser(880) and subsequent disruption of GluR2 binding to its synaptic anchoring protein (GRIP), resulting in a switch of GluR2-containing AMPARs to GluR2-lacking AMPARs and an increase of AMPAR Ca(2+) permeability at the synapses in dorsal horn neurons. Spinal cord NMDA receptor-mediated triggering of protein kinase C (PKC) activation is required for the induction and maintenance of CFA-induced dorsal horn GluR2 internalization. Moreover, preventing CFA-induced spinal GluR2 internalization through targeted mutation of the GluR2 PKC phosphorylation site impairs CFA-evoked nociceptive hypersensitivity during the maintenance period. These results suggest that dorsal horn GluR2 internalization might participate in the maintenance of NMDA receptor/PKC-dependent nociceptive hypersensitivity in persistent inflammatory pain.
Asunto(s)
Células del Asta Posterior/metabolismo , Células del Asta Posterior/patología , Proteína Quinasa C/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Activación Enzimática/fisiología , Femenino , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Mutantes , Células del Asta Posterior/enzimología , Ratas , Ratas Sprague-Dawley , Factores de TiempoRESUMEN
Depression is associated with abnormal neuronal plasticity. AMPA receptors mediate transmission and plasticity at excitatory synapses in a manner which is positively regulated by phosphorylation at Ser831-GluR1, a CaMKII/PKC site, and Ser845-GluR1, a PKA site. Treatment with the selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor fluoxetine increases P-Ser845-GluR1 but not P-Ser831-GluR1. Here, it was found that treatment with another antidepressant, tianeptine, increased P-Ser831-GluR1 in the frontal cortex and the CA3 region of hippocampus and P-Ser845-GluR1 in the CA3 region of hippocampus. A receptorome profile detected no affinity for tianeptine at any monaminergic receptors or transporters, confirming an atypical profile for this compound. Behavioural analyses showed that mice bearing point mutations at both Ser831- and Ser845-GluR1, treated with saline, exhibited increased latency to enter the centre of an open field and increased immobility in the tail-suspension test compared to their wild-type counterparts. Chronic tianeptine treatment increased open-field locomotion and reduced immobility in wild-type mice but not in phosphomutant GluR1 mice. P-Ser133-CREB was reduced in the CA3 region of hippocampus in phosphomutant mice, and tianeptine decreased P-Ser133-CREB in this region in wild-type, but not in phosphomutant, mice. Tianeptine increased P-Ser133-CREB in the CA1 region in wild-type mice but not in phosphomutant GluR1 mice. There were higher basal P-Ser133-CREB and c-fos levels in frontal and cingulate cortex in phosphomutant GluR1 mice; these changes in level were counteracted by tianeptine in a GluR1-independent manner. Using phosphorylation assays and phosphomutant GluR1 mice, this study provides evidence that AMPA receptor phosphorylation mediates certain explorative and antidepressant-like actions under basal conditions and following tianeptine treatment.
Asunto(s)
Antidepresivos Tricíclicos/farmacología , Lóbulo Frontal/metabolismo , Hipocampo/metabolismo , Receptores AMPA/metabolismo , Tiazepinas/farmacología , Animales , Antidepresivos Tricíclicos/administración & dosificación , Conducta Animal/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Esquema de Medicación , Pérdida de Tono Postural/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Fosforilación/efectos de los fármacos , Mutación Puntual , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores AMPA/genética , Tiazepinas/administración & dosificación , Distribución TisularRESUMEN
During cortical development, both activity-dependent and genetically determined mechanisms are required to establish proper neuronal connectivity. While activity-dependent transcription may link the two processes, specific transcription factors that mediate such a process have not been identified. We identified the basic helix-loop-helix (bHLH) transcription factor Neurogenic Differentiation 2 (NeuroD2) in a screen for calcium-regulated transcription factors and report that it is required for the proper development of thalamocortical connections. In neuroD2 null mice, thalamocortical axon terminals fail to segregate in the somatosensory cortex, and the postsynaptic barrel organization is disrupted. Additionally, synaptic transmission is defective at thalamocortical synapses in neuroD2 null mice. Total excitatory synaptic currents are reduced in layer IV in the knockouts, and the relative contribution of AMPA and NMDA receptor-mediated currents to evoked responses is decreased. These observations indicate that NeuroD2 plays a critical role in regulating synaptic maturation and the patterning of thalamocortical connections.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Vías Nerviosas/crecimiento & desarrollo , Neuropéptidos/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Sinapsis/fisiología , Tálamo/crecimiento & desarrollo , 2-Amino-5-fosfonovalerato/farmacología , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Western Blotting/métodos , Proteína de Unión a CREB/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Quelantes/farmacología , Cloranfenicol O-Acetiltransferasa/metabolismo , Interacciones Farmacológicas , Ácido Egtácico/farmacología , Estimulación Eléctrica/métodos , Embrión de Mamíferos , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Expresión Génica/efectos de los fármacos , Inmunohistoquímica/métodos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Noqueados , Modelos Biológicos , Factores de Crecimiento Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuropéptidos/deficiencia , Nimodipina/farmacología , Técnicas de Placa-Clamp/métodos , Fosfopiruvato Hidratasa/metabolismo , Cloruro de Potasio/farmacología , Piridazinas/farmacología , Compuestos de Piridinio/metabolismo , Quinoxalinas/farmacología , Receptores AMPA/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/metabolismo , Corteza Somatosensorial/citología , Activación Transcripcional/genética , Transfección/métodos , Vibrisas/crecimiento & desarrollo , Vibrisas/inervaciónRESUMEN
Cerebellar long-term depression (LTD) is a persistent attenuation of synaptic transmission at the parallel fiber-Purkinje cell synapse mediated by the removal of GluR2 subunit-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The removal of AMPA receptors requires protein kinase C phosphorylation of the GluR2 subunit within its carboxyl-terminal PSD-95/Discs Large/Zona Occludens-1 (PDZ) ligand and binding of the PDZ domain-containing protein, PICK1. The sequence of the GluR2 subunit is similar to that of the GluR3 and GluR4c subunits, which also contain PDZ ligands and protein kinase C consensus sites. Although GluR3 and GluR4c are also expressed in Purkinje cells, we have previously shown that cerebellar LTD is absent in GluR2(-/-) mice, suggesting that these subunits are unable to substitute functionally for GluR2. Here, we examine the apparent difference in the regulation of these AMPA receptor subunits by attempting to rescue LTD in GluR2(-/-) Purkinje cells with WT and mutant GluR2 and GluR3 subunits. Our results show that the selective interaction of the GluR2 subunit with the N-ethylmaleimide-sensitive factor protein is required for synaptic, but not extrasynaptic, incorporation of AMPA receptors as well as for their competence to undergo LTD. In addition, perfusion of a synthetic peptide that acutely disrupts the interaction of GluR2 with N-ethylmaleimide-sensitive factor selectively depletes GluR2-containing receptors from synapses and occludes LTD. These findings demonstrate that interaction of AMPA receptors with N-ethylmaleimide-sensitive factor plays a critical role in incorporation of AMPA receptors into synapses and for their subsequent removal during cerebellar LTD.
Asunto(s)
Cerebelo/patología , Depresión/patología , Etilmaleimida/farmacología , Receptores AMPA/genética , Sinapsis/metabolismo , Proteínas de Transporte Vesicular/fisiología , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , ADN Complementario/metabolismo , Técnicas de Transferencia de Gen , Genotipo , Ligandos , Ratones , Ratones Transgénicos , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis , Proteínas Sensibles a N-Etilmaleimida , Proteínas Nucleares/metabolismo , Péptidos/química , Fosforilación , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Células de Purkinje/metabolismo , Receptores AMPA/metabolismo , Factores de Tiempo , Proteínas de Transporte Vesicular/metabolismoRESUMEN
C75, a synthetic inhibitor of fatty acid synthase (FAS), is hypothesized to alter the metabolism of neurons in the hypothalamus that regulate feeding behavior to contribute to the decreased food intake and profound weight loss seen with C75 treatment. In the present study, we characterize the suitability of primary cultures of cortical neurons for studies designed to investigate the consequences of C75 treatment and the alteration of fatty acid metabolism in neurons. We demonstrate that in primary cortical neurons, C75 inhibits FAS activity and stimulates carnitine palmitoyltransferase-1 (CPT-1), consistent with its effects in peripheral tissues. C75 alters neuronal ATP levels and AMP-activated protein kinase (AMPK) activity. Neuronal ATP levels are affected in a biphasic manner with C75 treatment, decreasing initially, followed by a prolonged increase above control levels. Cerulenin, a FAS inhibitor, causes a similar biphasic change in ATP levels, although levels do not exceed control. C75 and cerulenin modulate AMPK phosphorylation and activity. TOFA, an inhibitor of acetyl-CoA carboxylase, increases ATP levels, but does not affect AMPK activity. Several downstream pathways are affected by C75 treatment, including glucose metabolism and acetyl-CoA carboxylase (ACC) phosphorylation. These data demonstrate that C75 modulates the levels of energy intermediates, thus, affecting the energy sensor AMPK. Similar effects in hypothalamic neurons could form the basis for the effects of C75 on feeding behavior.