Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(51): 32711-32721, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33277431

RESUMEN

CLC-2 is a voltage-gated chloride channel that is widely expressed in mammalian tissues. In the central nervous system, CLC-2 appears in neurons and glia. Studies to define how this channel contributes to normal and pathophysiological function in the central nervous system raise questions that remain unresolved, in part due to the absence of precise pharmacological tools for modulating CLC-2 activity. Herein, we describe the development and optimization of AK-42, a specific small-molecule inhibitor of CLC-2 with nanomolar potency (IC50 = 17 ± 1 nM). AK-42 displays unprecedented selectivity (>1,000-fold) over CLC-1, the closest CLC-2 homolog, and exhibits no off-target engagement against a panel of 61 common channels, receptors, and transporters expressed in brain tissue. Computational docking, validated by mutagenesis and kinetic studies, indicates that AK-42 binds to an extracellular vestibule above the channel pore. In electrophysiological recordings of mouse CA1 hippocampal pyramidal neurons, AK-42 acutely and reversibly inhibits CLC-2 currents; no effect on current is observed on brain slices taken from CLC-2 knockout mice. These results establish AK-42 as a powerful tool for investigating CLC-2 neurophysiology.


Asunto(s)
Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Sitios de Unión , Células CHO , Canales de Cloruro CLC-2 , Línea Celular , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cricetulus , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Hipocampo/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Simulación del Acoplamiento Molecular , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Relación Estructura-Actividad
2.
Elife ; 92020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32902384

RESUMEN

Absence seizures result from 3 to 5 Hz generalized thalamocortical oscillations that depend on highly regulated inhibitory neurotransmission in the thalamus. Efficient reuptake of the inhibitory neurotransmitter GABA is essential, and reuptake failure worsens human seizures. Here, we show that blocking GABA transporters (GATs) in acute rat brain slices containing key parts of the thalamocortical seizure network modulates epileptiform activity. As expected, we found that blocking either GAT1 or GAT3 prolonged oscillations. However, blocking both GATs unexpectedly suppressed oscillations. Integrating experimental observations into single-neuron and network-level computational models shows how a non-linear dependence of T-type calcium channel gating on GABAB receptor activity regulates network oscillations. Receptor activity that is either too brief or too protracted fails to sufficiently open T-type channels necessary for sustaining oscillations. Only within a narrow range does prolonging GABAB receptor activity promote channel opening and intensify oscillations. These results have implications for therapeutics that modulate inhibition kinetics.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Modelos Neurológicos , Neuronas/fisiología , Tálamo/fisiología , Animales , Células Cultivadas , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/metabolismo , Convulsiones/metabolismo
3.
Neuron ; 93(5): 1165-1179.e6, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28238546

RESUMEN

Voltage-gated sodium channel (VGSC) mutations cause severe epilepsies marked by intermittent, pathological hypersynchronous brain states. Here we present two mechanisms that help to explain how mutations in one VGSC gene, Scn8a, contribute to two distinct seizure phenotypes: (1) hypoexcitation of cortical circuits leading to convulsive seizure resistance, and (2) hyperexcitation of thalamocortical circuits leading to non-convulsive absence epilepsy. We found that loss of Scn8a leads to altered RT cell intrinsic excitability and a failure in recurrent RT synaptic inhibition. We propose that these deficits cooperate to enhance thalamocortical network synchrony and generate pathological oscillations. To our knowledge, this finding is the first clear demonstration of a pathological state tied to disruption of the RT-RT synapse. Our observation that loss of a single gene in the thalamus of an adult wild-type animal is sufficient to cause spike-wave discharges is striking and represents an example of absence epilepsy of thalamic origin.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Red Nerviosa/metabolismo , Sinapsis/metabolismo , Tálamo/metabolismo , Animales , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/metabolismo , Ratones , Fenotipo , Convulsiones/genética , Convulsiones/metabolismo
4.
Neuron ; 93(1): 194-210, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27989462

RESUMEN

Thalamic relay neurons have well-characterized dual firing modes: bursting and tonic spiking. Studies in brain slices have led to a model in which rhythmic synchronized spiking (phasic firing) in a population of relay neurons leads to hyper-synchronous oscillatory cortico-thalamo-cortical rhythms that result in absence seizures. This model suggests that blocking thalamocortical phasic firing would treat absence seizures. However, recent in vivo studies in anesthetized animals have questioned this simple model. Here we resolve this issue by developing a real-time, mode-switching approach to drive thalamocortical neurons into or out of a phasic firing mode in two freely behaving genetic rodent models of absence epilepsy. Toggling between phasic and tonic firing in thalamocortical neurons launched and aborted absence seizures, respectively. Thus, a synchronous thalamocortical phasic firing state is required for absence seizures, and switching to tonic firing rapidly halts absences. This approach should be useful for modulating other networks that have mode-dependent behaviors.


Asunto(s)
Corteza Cerebral/fisiopatología , Epilepsia Tipo Ausencia/fisiopatología , Red Nerviosa/fisiopatología , Neuronas/fisiología , Tálamo/fisiopatología , Animales , Ondas Encefálicas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Electrocorticografía , Epilepsia/fisiopatología , Ratones , Vías Nerviosas , Optogenética , Técnicas de Placa-Clamp , Ratas , Tálamo/citología
5.
Neuron ; 92(4): 687-704, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27883901

RESUMEN

Thalamic oscillators contribute to both normal rhythms associated with sleep and anesthesia and abnormal, hypersynchronous oscillations that manifest behaviorally as absence seizures. In this review, we highlight new findings that refine thalamic contributions to cortical rhythms and suggest that thalamic oscillators may be subject to both local and global control. We describe endogenous thalamic mechanisms that limit network synchrony and discuss how these protective brakes might be restored to prevent absence seizures. Finally, we describe how intrinsic and circuit-level specializations among thalamocortical loops may determine their involvement in widespread oscillations and render subsets of thalamic nuclei especially vulnerable to pathological synchrony.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Epilepsia/fisiopatología , Neuronas/fisiología , Sueño/fisiología , Tálamo/fisiología , Corteza Cerebral/fisiopatología , Humanos , Núcleos Talámicos/fisiología , Tálamo/fisiopatología
6.
Elife ; 52016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27725090

RESUMEN

Temporary circuits amplify spontaneous activity in the visual system of neonatal rats.


Asunto(s)
Retina , Roedores , Animales , Retroalimentación , Ratas , Tálamo
7.
J Neurosci ; 34(2): 675-87, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24403165

RESUMEN

Recurrent connections in the corticothalamic circuit underlie oscillatory behavior in this network and range from normal sleep rhythms to the abnormal spike-wave discharges seen in absence epilepsy. The propensity of thalamic neurons to fire postinhibitory rebound bursts mediated by low-threshold calcium spikes renders the circuit vulnerable to both increased excitation and increased inhibition, such as excessive excitatory cortical drive to thalamic reticular (RT) neurons or heightened inhibition of thalamocortical relay (TC) neurons by RT. In this context, a protective role may be played by group III metabotropic receptors (mGluRs), which are uniquely located in the presynaptic active zone and typically act as autoreceptors or heteroceptors to depress synaptic release. Here, we report that these receptors regulate short-term plasticity at two loci in the corticothalamic circuit in rats: glutamatergic cortical synapses onto RT neurons and GABAergic synapses onto TC neurons in somatosensory ventrobasal thalamus. The net effect of group III mGluR activation at these synapses is to suppress thalamic oscillations as assayed in vitro. These findings suggest a functional role of these receptors to modulate corticothalamic transmission and protect against prolonged activity in the network.


Asunto(s)
Corteza Cerebral/fisiología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Tálamo/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Inmunohistoquímica , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
8.
Neuron ; 78(6): 1063-74, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23727119

RESUMEN

Benzodiazepines (BZs) allosterically modulate γ-aminobutyric acid type-A receptors (GABAARs) to increase inhibitory synaptic strength. Diazepam binding inhibitor (DBI) protein is a BZ site ligand expressed endogenously in the brain, but functional evidence for BZ-mimicking positive modulatory actions has been elusive. We demonstrate an endogenous potentiation of GABAergic synaptic transmission and responses to GABA uncaging in the thalamic reticular nucleus (nRT) that is absent in both nm1054 mice, in which the Dbi gene is deleted, and mice in which BZ binding to α3 subunit-containing GABAARs is disrupted. Viral transduction of DBI into nRT is sufficient to rescue the endogenous potentiation of GABAergic transmission in nm1054 mice. Both mutations enhance thalamocortical spike-and-wave discharges characteristic of absence epilepsy. Together, these results indicate that DBI mediates endogenous nucleus-specific BZ-mimicking ("endozepine") roles to modulate nRT function and suppress thalamocortical oscillations. Enhanced DBI signaling might serve as a therapy for epilepsy and other neurological disorders.


Asunto(s)
Inhibidor de la Unión a Diazepam/fisiología , Potenciales Postsinápticos Inhibidores/genética , Receptores de GABA-A/metabolismo , Tálamo/fisiología , Regulación Alostérica/genética , Sustitución de Aminoácidos/genética , Animales , Benzodiazepinas/metabolismo , Inhibidor de la Unión a Diazepam/deficiencia , Inhibidor de la Unión a Diazepam/genética , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación/genética , Inhibición Neural/genética , Receptores de GABA-A/genética , Receptores de GABA-A/fisiología , Ácido gamma-Aminobutírico/metabolismo
9.
Nat Neurosci ; 16(1): 64-70, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23143518

RESUMEN

Cerebrocortical injuries such as stroke are a major source of disability. Maladaptive consequences can result from post-injury local reorganization of cortical circuits. For example, epilepsy is a common sequela of cortical stroke, but the mechanisms responsible for seizures following cortical injuries remain unknown. In addition to local reorganization, long-range, extra-cortical connections might be critical for seizure maintenance. In rats, we found that the thalamus, a structure that is remote from, but connected to, the injured cortex, was required to maintain cortical seizures. Thalamocortical neurons connected to the injured epileptic cortex underwent changes in HCN channel expression and became hyperexcitable. Targeting these neurons with a closed-loop optogenetic strategy revealed that reducing their activity in real-time was sufficient to immediately interrupt electrographic and behavioral seizures. This approach is of therapeutic interest for intractable epilepsy, as it spares cortical function between seizures, in contrast with existing treatments, such as surgical lesioning or drugs.


Asunto(s)
Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Corteza Cerebral/fisiopatología , Vías Nerviosas/fisiología , Optogenética , Convulsiones/etiología , Tálamo/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Fenómenos Biofísicos/fisiología , Biofisica , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Modelos Animales de Enfermedad , Capacidad Eléctrica , Estimulación Eléctrica , Electroencefalografía , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Técnicas In Vitro , Canales Iónicos/genética , Canales Iónicos/metabolismo , Luz , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Potenciales de la Membrana/genética , Microscopía Confocal , Modelos Neurológicos , Inhibición Neural/genética , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Análisis Espectral , Vigilia/genética
10.
Nat Neurosci ; 14(9): 1167-73, 2011 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-21857658

RESUMEN

Cortico-thalamo-cortical circuits mediate sensation and generate neural network oscillations associated with slow-wave sleep and various epilepsies. Cortical input to sensory thalamus is thought to mainly evoke feed-forward synaptic inhibition of thalamocortical (TC) cells via reticular thalamic nucleus (nRT) neurons, especially during oscillations. This relies on a stronger synaptic strength in the cortico-nRT pathway than in the cortico-TC pathway, allowing the feed-forward inhibition of TC cells to overcome direct cortico-TC excitation. We found a systemic and specific reduction in strength in GluA4-deficient (Gria4(-/-)) mice of one excitatory synapse of the rhythmogenic cortico-thalamo-cortical system, the cortico-nRT projection, and observed that the oscillations could still be initiated by cortical inputs via the cortico-TC-nRT-TC pathway. These results reveal a previously unknown mode of cortico-thalamo-cortical transmission, bypassing direct cortico-nRT excitation, and describe a mechanism for pathological oscillation generation. This mode could be active under other circumstances, representing a previously unknown channel of cortico-thalamo-cortical information processing.


Asunto(s)
Corteza Cerebral/fisiopatología , Epilepsia Tipo Ausencia/patología , Receptores AMPA/deficiencia , Tálamo/fisiopatología , Animales , Animales Recién Nacidos , Biofisica , Channelrhodopsins , Modelos Animales de Enfermedad , Estimulación Eléctrica , Electroencefalografía , Epilepsia Tipo Ausencia/genética , Potenciales Postsinápticos Excitadores/genética , Antagonistas del GABA/farmacología , Técnicas In Vitro , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/fisiopatología , Neuronas/fisiología , Compuestos Organofosforados/farmacología , Técnicas de Placa-Clamp/métodos , Picrotoxina/farmacología
11.
J Neurosci ; 30(45): 15262-76, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21068331

RESUMEN

The long-lasting actions of the inhibitory neurotransmitter GABA result from the activation of metabotropic GABA(B) receptors. Enhanced GABA(B)-mediated IPSCs are critical for the generation of generalized thalamocortical seizures. Here, we demonstrate that GABA(B)-mediated IPSCs recorded in the thalamus are primarily defined by GABA diffusion and activation of distal extrasynaptic receptors potentially up to tens of micrometers from synapses. We also show that this diffusion is differentially regulated by two astrocytic GABA transporters, GAT1 and GAT3, which are localized near and far from synapses, respectively. A biologically constrained model of GABA diffusion and uptake shows how the two GATs differentially modulate amplitude and duration of GABA(B) IPSCs. Specifically, the perisynaptic expression of GAT1 enables it to regulate GABA levels near synapses and selectively modulate peak IPSC amplitude, which is primarily dependent on perisynaptic receptor occupancy. GAT3 expression, however, is broader and includes distal extrasynaptic regions. As such, GAT3 acts as a gatekeeper to prevent diffusion of GABA away from synapses toward extrasynaptic regions that contain a potentially enormous pool of GABA(B) receptors. Targeting this gatekeeper function may provide new pharmacotherapeutic opportunities to prevent the excessive GABA(B) receptor activation that appears necessary for thalamic seizure generation.


Asunto(s)
Astrocitos/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Receptores de GABA-B/fisiología , Tálamo/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Electrofisiología , Proteínas Transportadoras de GABA en la Membrana Plasmática/fisiología , Inmunohistoquímica , Inhibición Neural/fisiología , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología
12.
J Neurophysiol ; 102(5): 2880-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19741104

RESUMEN

The generation of prolonged neuronal activity depends on the maintenance of synaptic neurotransmitter pools. The astrocytic glutamate-glutamine cycle is a major mechanism for recycling the neurotransmitters GABA and glutamate. Here we tested the effect of disrupting the glutamate-glutamine cycle on two types of neuronal activity patterns in the thalamus: sleep-related spindles and epileptiform oscillations. In recording conditions believed to induce glutamine scarcity, epileptiform oscillations showed a progressive reduction in duration that was partially reversible by the application of exogenous glutamine (300 muM). Blocking uptake of glutamine into neurons with alpha-(methylamino) isobutyric acid (5 mM) caused a similar reduction in oscillation duration, as did blocking neuronal GABA synthesis with 3-mercaptoproprionic acid (10 muM). However, comparable manipulations did not affect sleep spindles. Together, these results support a crucial role for the glutamate-glutamine cycle in providing the neurotransmitters necessary for the generation of epileptiform activity and suggest potential therapeutic approaches that selectively reduce seizure activity but maintain normal neuronal activity.


Asunto(s)
Potenciales de Acción/fisiología , Astrocitos/fisiología , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Neuronas/fisiología , Tálamo/citología , Ácido 3-Mercaptopropiónico/farmacología , Potenciales de Acción/efectos de los fármacos , Análisis de Varianza , Animales , Astrocitos/efectos de los fármacos , Bicuculina/análogos & derivados , Bicuculina/farmacología , Convulsivantes/farmacología , Femenino , Ácido Glutámico/farmacología , Glutamina/farmacología , Masculino , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
13.
Proc Natl Acad Sci U S A ; 106(18): 7630-5, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19380748

RESUMEN

Neural inhibition within the thalamus is integral in shaping thalamocortical oscillatory activity. Fast, synaptic inhibition is primarily mediated by activation of heteropentameric GABA(A) receptor complexes. Here, we examined the synaptic physiology and network properties of mice lacking GABA(A) receptor alpha3, a subunit that in thalamus is uniquely expressed by inhibitory neurons of the reticular nucleus (nRT). Deletion of this subunit produced a powerful compensatory gain in inhibitory postsynaptic response in nRT neurons. Although, other forms of inhibitory and excitatory synaptic transmission in the circuit were unchanged, evoked thalamic oscillations were strongly dampened in alpha3 knockout mice. Furthermore, pharmacologically induced thalamocortical absence seizures displayed a reduction in length and power in alpha3 knockout mice. These studies highlight the role of GABAergic inhibitory strength within nRT in the maintenance of thalamic oscillations, and demonstrate that inhibitory intra-nRT synapses are a critical control point for regulating higher order thalamocortical network activity.


Asunto(s)
Epilepsia Tipo Ausencia/fisiopatología , Receptores de GABA-A/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Animales , Potenciales Evocados/genética , Eliminación de Gen , Núcleos Talámicos Intralaminares/fisiología , Ratones , Ratones Noqueados , Receptores de GABA-A/genética , Transmisión Sináptica
14.
J Neurophysiol ; 102(1): 203-13, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19386752

RESUMEN

Rhythmic oscillations throughout the cortex are observed during physiological and pathological states of the brain. The thalamus generates sleep spindle oscillations and spike-wave discharges characteristic of absence epilepsy. Much has been learned regarding the mechanisms underlying these oscillations from in vitro brain slice preparations. One widely used model to understand the epileptiform oscillations underlying absence epilepsy involves application of bicuculline methiodide (BMI) to brain slices containing the thalamus. BMI is a well-known GABAA receptor blocker that has previously been discovered to also block small-conductance, calcium-activated potassium (SK) channels. Here we report that the robust epileptiform oscillations observed during BMI application rely synergistically on both GABAA receptor and SK channel antagonism. Neither application of picrotoxin, a selective GABAA receptor antagonist, nor application of apamin, a selective SK channel antagonist, alone yielded the highly synchronized, long-lasting oscillations comparable to those observed during BMI application. However, partial blockade of SK channels by subnanomolar concentrations of apamin combined with picrotoxin sufficiently replicated BMI oscillations. We found that, at the cellular level, apamin enhanced the intrinsic excitability of reticular nucleus (RT) neurons but had no effect on relay neurons. This work suggests that regulation of RT excitability by SK channels can influence the excitability of thalamocortical networks and may illuminate possible pharmacological treatments for absence epilepsy. Finally, our results suggest that changes in the intrinsic properties of individual neurons and changes at the circuit level can robustly modulate these oscillations.


Asunto(s)
Relojes Biológicos/fisiología , Corteza Cerebral/fisiología , Receptores de GABA-A/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Tálamo/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Apamina/farmacología , Bicuculina/análogos & derivados , Bicuculina/farmacología , Relojes Biológicos/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Estimulación Eléctrica/métodos , Antagonistas del GABA/farmacología , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp/métodos , Picrotoxina/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Tálamo/citología , Tálamo/efectos de los fármacos
15.
Hum Mol Genet ; 17(12): 1738-49, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18316356

RESUMEN

Absence epilepsy, characterized by spike-wave discharges (SWD) in the electroencephalogram, arises from aberrations within the circuitry of the cerebral cortex and thalamus that regulates awareness. The inbred mouse strain C3H/HeJ is prone to absence seizures, with a major susceptibility locus, spkw1, accounting for most of the phenotype. Here we find that spkw1 is associated with a hypomorphic retroviral-like insertion mutation in the Gria4 gene, encoding one of the four amino-3-hydroxy-5-methyl-4isoxazolepropionic acid (AMPA) receptor subunits in the brain. Consistent with this, Gria4 knockout mice also have frequent SWD and do not complement spkw1. In contrast, null mutants for the related gene Gria3 do not have SWD, and Gria3 loss actually lowers SWD of spkw1 homozygotes. Gria3 and Gria4 encode the predominant AMPA receptor subunits in the reticular thalamus, which is thought to play a central role in seizure genesis by inhibiting thalamic relay cells and promoting rebound burst firing responses. In Gria4 mutants, synaptic excitation of inhibitory reticular thalamic neurons is enhanced, with increased duration of synaptic responses-consistent with what might be expected from reduction of the kinetically faster subunit of AMPA receptors encoded by Gria4. These results demonstrate for the first time an essential role for Gria4 in the brain, and suggest that abnormal AMPA receptor-dependent synaptic activity can be involved in the network hypersynchrony that underlies absence seizures.


Asunto(s)
Epilepsia Tipo Ausencia/genética , Receptores AMPA/genética , Receptores AMPA/metabolismo , Animales , Electroencefalografía , Epilepsia Tipo Ausencia/fisiopatología , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Datos de Secuencia Molecular , Sinapsis/fisiología , Tálamo/fisiología
16.
Trends Neurosci ; 30(7): 350-6, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17544519

RESUMEN

The circuitry within the thalamus creates an intrinsic oscillatory unit whose function depends critically on reciprocal synaptic connectivity between excitatory thalamocortical relay neurons and inhibitory thalamic reticular neurons along with a robust post-inhibitory rebound mechanism in relay neurons. Feedforward and feedback connections between cortex and thalamus reinforce the thalamic oscillatory activity into larger thalamocortical networks to generate sleep spindles and spike-wave discharge of generalized absence epilepsy. The degree of synchrony within the thalamic network seems to be crucial in determining whether normal (spindle) or pathological (spike-wave) oscillations occur, and recent studies show that regulation of excitability in the reticular nucleus leads to dynamical modulation of the state of the thalamic circuit and provide a basis for explaining how a variety of unrelated genetic alterations might lead to the spike-wave phenotype. In addition, given the central role of the reticular nucleus in generating spike-wave discharge, these studies have suggested specific interventions that would prevent seizures while still allowing normal spindle generation to occur. This review is part of the INMED/TINS special issue Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com).


Asunto(s)
Relojes Biológicos/fisiología , Dinámicas no Lineales , Prosencéfalo/fisiología , Tálamo/fisiología , Animales
17.
Peptides ; 28(2): 250-6, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17196708

RESUMEN

Neuropeptide Y is the ligand of a family of G-protein coupled receptors (Y(1) to Y(6)). In the thalamus, exogenous and endogenously released NPY can shorten the duration of thalamic oscillations in brain slices from P13 to P15 rats, an in vitro model of absence seizures. Here, we examine which Y receptors are involved in this modulation. Application of the Y(1) receptor agonist Leu(31)Pro(34)NPY caused a reversible reduction in the duration of thalamic oscillations (-26.6+/-7.8%), while the Y(2) receptor agonist peptideYY((3-36)) and the Y(5) receptor agonist BWX-46 did not exert a significant effect. No Y receptor agonist affected oscillation period. Application of antagonists of Y(1), Y(2) and Y(5) receptors (BIBP3226, BIIE0246 and L152,806, respectively) produced results consistent with those obtained from agonists. BIBP3226 caused a reversible disinhibition, an effect that increases oscillation duration (18.2+/-9.7%) while BIIE0246 and L152,806 had no significant effect. Expression of NPY is limited to neurons in the reticular thalamic nucleus (nRt), but Y(1) receptors are expressed in both nRt and adjacent thalamic relay nuclei. Thus, intra-nRt or nRt to relay nucleus NPY release could cause Y(1) receptor mediated inhibition of thalamic oscillations.


Asunto(s)
Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal , Tálamo/metabolismo , Animales , Ratas
18.
Neuropharmacology ; 51(1): 121-8, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16678865

RESUMEN

Neonatal treatment of Long-Evans Hooded rats with the cholesterol synthesis inhibitor (CSI) AY9944 has been shown to increase occurrence of spike-waves in EEG recordings and decrease benzodiazepines sensitivity of GABA(A) receptor-mediated responses in neurons from the thalamic reticular nuclei (nRt, Wu et al., 2004). The present experiments were designed to investigate the changes in the gamma2 and alpha1 subunits of the GABA(A) receptor in CSI model rats as possible mechanisms of these changes. Western blot, immunohistochemistry and real-time PCR techniques were performed to measure the levels of GABA(A) receptor gamma2 and alpha1 subunit transcripts and protein in the nRt and ventrobasal (VB) relay nuclei of thalamus and in somatosensory cortex. In CSI model animals, Western blot results showed that gamma2 subunit expression significantly decreased in thalamus (control, n=6: 0.17+/-0.02 relative to actin vs. CSI model, n=6: 0.11+/-0.01, P<0.05) but neither in cortex nor in hippocampal tissues. Conversely, alpha1 subunit expression decreased in CSI model somatosensory cortex, but not in nRt and VB. The present results demonstrate that neonatal block of cholesterol synthesis produces region- and subunit-specific decreases in GABA(A) receptor subunits in thalamus and cortex. Selective reductions in GABA(A) receptor subunits in thalamus may play a role in pathophysiology of absence epilepsy.


Asunto(s)
Corteza Cerebral/metabolismo , Epilepsia Tipo Ausencia/metabolismo , Receptores de GABA-A/metabolismo , Tálamo/metabolismo , Animales , Animales Recién Nacidos , Anticolesterolemiantes/farmacología , Western Blotting , Cartilla de ADN , Electroencefalografía/efectos de los fármacos , Epilepsia Tipo Ausencia/inducido químicamente , Inmunohistoquímica , ARN/biosíntesis , ARN/genética , Ratas , Ratas Long-Evans , Receptores de GABA-A/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/metabolismo , Núcleos Talámicos/efectos de los fármacos , Núcleos Talámicos/metabolismo , Diclorhidrato de trans-1,4-Bis(2-clorobenzaminometil)ciclohexano/farmacología
19.
J Neurophysiol ; 96(2): 834-45, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16707715

RESUMEN

Classification of inhibitory interneurons is critical in determining their role in normal information processing and pathophysiological conditions such as epilepsy. Classification schemes have relied on morphological, physiological, biochemical, and molecular criteria; and clear correlations have been demonstrated between firing patterns and cellular markers such as neuropeptides and calcium-binding proteins. This molecular diversity has allowed generation of transgenic mouse strains in which GFP expression is linked to the expression of one of these markers and presumably a single subtype of neuron. In the GIN mouse (EGFP-expressing Inhibitory Neurons), a subpopulation of somatostatin-containing interneurons in the hippocampus and neocortex is labeled with enhanced green fluorescent protein (EGFP). To optimize the use of the GIN mouse, it is critical to know whether the population of somatostatin-EGFP-expressing interneurons is homogeneous. We performed unsupervised cluster analysis on 46 EGFP-expressing interneurons, based on data obtained from whole cell patch-clamp recordings. Cells were classified according to a number of electrophysiological variables related to spontaneous excitatory postsynaptic currents (sEPSCs), firing behavior, and intrinsic membrane properties. EGFP-expressing interneurons were heterogeneous and at least four subgroups could be distinguished. In addition, multiple discriminant analysis was applied to data collected during whole cell recordings to develop an algorithm for predicting the group membership of newly encountered EGFP-expressing interneurons. Our data are consistent with a heterogeneous population of neurons based on electrophysiological properties and indicate that EGFP expression in the GIN mouse is not restricted to a single class of somatostatin-positive interneuron.


Asunto(s)
Interneuronas/clasificación , Interneuronas/fisiología , Corteza Motora/fisiología , Corteza Somatosensorial/fisiología , Somatostatina/fisiología , Algoritmos , Animales , Recuento de Células , Análisis por Conglomerados , Estimulación Eléctrica , Electrofisiología , Potenciales Postsinápticos Excitadores/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Técnicas In Vitro , Ratones , Modelos Neurológicos , Corteza Motora/citología , Neocórtex/fisiología , Técnicas de Placa-Clamp , Corteza Somatosensorial/citología
20.
J Neurosci ; 26(16): 4247-55, 2006 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-16624945

RESUMEN

Rhythmic inhibition entrains the firing of excitatory neurons during oscillations throughout the brain. Previous work has suggested that the strength and duration of inhibitory input determines the synchrony and period, respectively, of these oscillations. In particular, sleep spindles result from a cycle of events including rhythmic inhibition and rebound bursts in thalamocortical (TC) neurons, and slowing and strengthening this inhibitory input may transform spindles into spike-wave discharges characteristic of absence epilepsy. Here, we used dynamic clamp to inject TC neurons with spindle-like trains of IPSCs and studied how modest changes in the amplitude and/or duration of these IPSCs affected the responses of the TC neurons. Contrary to our expectations, we found that prolonging IPSCs accelerates postinhibitory rebound (PIR) in TC neurons, and that increasing either the amplitude or duration of IPSCs desynchronizes PIR activity in a population of TC cells. Tonic injection of hyperpolarizing or depolarizing current dramatically alters the timing and synchrony of PIR. These results demonstrate that rhythmic PIR activity is an emergent property of interactions between intrinsic and synaptic currents, not just a passive reflection of incoming synaptic inhibition.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Corteza Cerebral/efectos de los fármacos , Agonistas de Receptores de GABA-A , Técnicas In Vitro , Ratones , Ratones Mutantes , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/fisiología , Sinapsis/efectos de los fármacos , Tálamo/efectos de los fármacos , Zolpidem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA