RESUMEN
This study aims to investigate the effects and the underlying mechanism of Huangqi Shengmai Decoction(HQSMD) in the treatment of fatigue and myocardial injury in a joint rat model. Wistar rats were assigned into 4 groups: sham, model, diltiazem hydrochloride(positive control), and HQSMD. The joint model of fatigue and myocardial injury was established by 14-day exhausted swimming followed by high ligation of the left anterior descending coronary artery. The rats in the sham group underwent a sham operation without coronary artery ligation or swimming. Since the fourth day after the ligation, swimming was continued in the model group and the drug-treated groups for the following 4 weeks. Meanwhile, the rats in the positive control group and the HQSMD group were respectively administrated intragastrically with diltiazem hydrochloride(20 mg·kg~(-1)·d~(-1)) and HQSMD(0.95 g·kg~(-1)·d~(-1)) for 4 weeks, while the shams and the models were given the same volume of normal saline. The left ventricular ejection fraction(LVEF), left ventricular fractional shortening(LVFS), grip strength, and myocardial pathophysiological changes were measured to evaluate the anti-fatigue and cardioprotective effects of HQSMD. The protein levels of PTEN-induced putative kinase 1(PINK1) and parkin in the myocardium were measured by Western blot to preliminarily elucidate the mechanism of HQSMD in ameliorating myocardial injury by suppressing mitochondrial autophagy. Compared with the shams, the models showed weakened heart function(LVEF and LVFS, P<0.01), decreased grasping ability(P<0.05), elevated blood urea nitrogen(BUN) and aldosterone(ALD) levels(P<0.01), aggravated myocardial fibrosis and connective tissue hyperplasia(P<0.01), and up-regulated protein levels of PINK1(P<0.01) and parkin(P<0.05). Four-week treatment with HQSMD increased the LVEF and LVFS levels(P<0.01), enhanced the grip strength(P<0.01), reduced the serum levels of BUN(P<0.01) and ALD(P<0.05), alleviated the pathological injury and fibrosis in the myocardium(P<0.01), and down-regulated the protein levels of PINK1(P<0.01) and parkin(P<0.05) in heart tissue. The results demonstrate that HQSMD may alleviate myocardial fibrosis and protect myocardium by suppressing the excessive mitochondrial auto-phagic activity and reducing the excessively elevated ALD level, thereby ameliorating fatigue and myocardial injury.
Asunto(s)
Cardiomiopatías , Lesiones Cardíacas , Ratas , Animales , Función Ventricular Izquierda , Ratas Sprague-Dawley , Volumen Sistólico , Diltiazem/farmacología , Ratas Wistar , Fibrosis , Proteínas Quinasas , Ubiquitina-Proteína LigasasRESUMEN
OBJECTIVE: To investigate the correlation of platelet and coagulation function with blood stasis syndrome (BSS) in coronary heart disease (CHD). METHODS: The protocol for this meta-analysis was registered on PROSPERO (CRD42019129452). PubMed, Excerpta Medica Database (Embase), the Cochrane Library, and China National Knowledge Infrastructure (CNKI) were searched from inception to 1st June, 2020. Trials were considered eligible if they enrolled BSS and non-BSS (NBSS) patients with CHD and provided information on platelet and coagulation function. The platelet function, coagulation function, and fibrinolytic activity were compared between the BSS and NBSS groups. Forest plots were generated to show the SMDs or ESs with corresponding 95% CIs for each study. Subgroup analysis and sensitivity analysis were performed to explore potential sources of heterogeneity. RESULTS: The systematic search identified 1,583 articles. Thirty trials involving 10,323 patients were included in the meta-analysis. The results showed that mean platelet volume, platelet distribution width, platelet aggregation rate, platelet P selectin, fibrinogen, plasminogen activator inhibitor-1 (PAI-1), thromboxane B2 (TXB2), 6-keto-prostaglandin F1alpha (6-keto-PGF1 α), and TXB2/6-keto-PGF1 α were higher in the BSS group than in the NBSS group (P<0.05 or P<0.01). Activated partial thromboplastin time was lower in the BSS group than in the NBSS group in the acute phase of CHD (P<0.01). The R and K values in thromboelastography and tissue plasminogen activator (t-PA) and t-PA/PAI-1 were lower in the BSS group than in the NBSS group (all P<0.01). No difference was found in the results of platelet count, plateletcrit, maximum amplitude, von Willebrand factor, prothrombin time, thrombin time, international normalized ratio, etc. between groups. CONCLUSIONS: Increased platelet function, hypercoagulability, and decreased fibrinolytic activity were found among CHD patients with BSS.