Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273563

RESUMEN

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Asunto(s)
Ecosistema , Agua Subterránea , Biodiversidad , Agua Dulce , Contaminación Ambiental
2.
Sci Total Environ ; 684: 381-389, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31154211

RESUMEN

Subterranean environments contain a diverse and unique obligate fauna: either aquatic living in the groundwater or terrestrial living in voids above the water table. In the arid region of the western part of the Australian continent, a particularly rich subterranean fauna coincides with a concentration of natural resource extraction operations. Since the inclusion of subterranean fauna in assessments of environmental impact in the mid-1990s, taxonomic research in Australia on this group of mainly invertebrates has grown exponentially. However, remaining knowledge gaps continue to frustrate both environmental regulators and development proponents due to high uncertainty in the decision-making process. In early 2017, the Western Australian Biodiversity Science Institute was tasked with leading the development of a research program to improve on the current state of knowledge of subterranean fauna. To balance the diverse environmental, economic and social needs of a range of stakeholders, transdisciplinary principles were applied to program development. A clear consensus on five broad focus areas to progress include: (1) data consolidation; (2) resilience to disturbance; (3) survey and sampling protocols; (4) abiotic and biotic habitat requirements; and (5) species delineation. In the context of these focus areas; we describe the research program development, reviewing the status of knowledge within each focus area, and the research initiatives to close the gaps in knowledge. We argue that, by adopting a transdisciplinary approach, the likelihood of success of the research program, as measured by the effective translation and adoption of research findings, will be maximized. This review is timely given the ever-increasing demand on groundwater systems for water extraction worldwide. A holistic understanding of the influence of anthropogenic activities on these ecosystems, and the functional role of organisms within them, will help to ensure that their health is not compromised.


Asunto(s)
Ecosistema , Agua Subterránea , Invertebrados/fisiología , Rasgos de la Historia de Vida , Animales , Australia , Cuevas , Investigación Interdisciplinaria , Invertebrados/clasificación
3.
Sci Total Environ ; 662: 963-977, 2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30795483

RESUMEN

Groundwaters provide the vast majority of unfrozen freshwater resources on the planet, but our knowledge of subsurface ecosystems is surprisingly limited. Stygofauna, or stygobionts -subterranean obligate aquatic animals - provide ecosystem services such as grazing biofilms and maintaining water quality, but we know little about how their ecosystems function. The cryptic nature of groundwaters, together with the high degree of local endemism and stygofaunal site-specific adaptations, represent major obstacles for the field. To overcome these challenges, and integrate biodiversity and ecosystem function, requires a holistic design drawing on classical ecology, taxonomy, molecular ecology and geochemistry. This study presents an approach based on the integration of existing concepts in groundwater ecology with three more novel scientific techniques: compound specific stable isotope analysis (CSIA) of amino acids, radiocarbon analysis (14C) and DNA analyses of environmental samples, stygofauna and gut contents. The combination of these techniques allows elucidation of aspects of ecosystem function that are often obscured in small invertebrates and cryptic systems. Carbon (δ13C) and nitrogen (δ15N) CSIA provides a linkage between biogeochemical patterns and ecological dynamics. It allows the identification of stygofaunal food web structures and energy flows based on the metabolic pathway of specific amino groups. Concurrently, 14C provides complementary data on the carbon recycling and incorporation within the stygobiotic trophic webs. Changes in groundwater environmental conditions (e.g. aquifer recharge), and subsequent community adaptations, can be pinpointed via the measurementof the radiocarbon fingerprint of water, sediment and specimens. DNA analyses are a rapidly expanding approach in ecology. eDNA is mainly employed as a biomonitoring tool, while metabarcoding of individuals and/or gut contents provides insight into diet regimes. In all cases, the application of the approaches in combination provides more powerful data than any one alone. By combining quantitative (CSIA and 14C) and qualitative (eDNA and DNA metabarcoding) approaches via Bayesian Mixing Models (BMM), linkages can be made between community composition, energy and nutrient sources in the system, and trophic function. This suggested multidisciplinary design will contribute to a more thorough comprehension of the biogeochemical and ecological patterns within these undervalued but essential ecosystems.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Ecología/métodos , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Agua Subterránea/normas , Animales , Organismos Acuáticos/clasificación , Biodiversidad , Isótopos de Carbono/análisis , Agua Subterránea/química , Isótopos de Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA