Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PeerJ ; 11: e16178, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790612

RESUMEN

To grow fruit plants, farmers in the Vietnamese Mekong Delta (VMD) must use raised bed constructions to avoid waterlogging during the rainy season. This study aimed to evaluate the effects of the age of the raised beds on the soil physicochemical properties of longan orchards located in the VMD. Two raised bed systems were evaluated: a young bed constructed 10 years ago and an old bed constructed 42 years ago. Soil samples were collected from five different soil layers (0-20, 20-40, 40-60, 60-80, and 80-100 cm) with four replicates per layer. Soil samples were tested for pH, electrical conductivity (EC), available phosphorus (AP), total nitrogen (TN), soil organic matter (SOM), exchangeable cations (Ca2+, K+, Mg2+, and Na+), cation exchange capacity (CEC), bulk density (BD), soil porosity, available water-holding capacity (AWC), particle composition (sand, silt, and clay), and size. The soil pH was approximately 1.0 units lower in the old bed compared to the young bed at depths of 0-20 and 20-40 cm. The BD was higher in the old bed (0.15 g cm-3) than in the young bed at a soil depth of 0.4 m. SOM, AP, exchangeable cations (Ca2+, Na+, and Mg2+), AWC, and soil porosity were significantly lower in both the topsoil (0-20 cm) and subsoil (20-40 cm) layers in the old bed than in the young bed. In particular, the SOM, AP, AWC, and soil porosity contents in the old bed decreased by 18%, 20%, 15%, and 17%, respectively, compared with those in the young bed at soil depths of 0-40 cm. Therefore, cultivating raised bed soil for a longer period significantly reduced the soil exchangeable cations, porosity, and fertility of the surface and subsurface soils. Based on these results, farmers should use soil conservation practices, such as cover crops, rice straw mulching, and soil amendments in their orchards to mitigate topsoil degradation.


Asunto(s)
Agricultura , Suelo , Agricultura/métodos , Cationes , Frutas/química , Fósforo , Suelo/química , Agua/análisis , Vietnam
2.
ScientificWorldJournal ; 2021: 6289695, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899086

RESUMEN

Fruit orchards in the Vietnamese Mekong Delta (VMD) are severely degraded due to many factors, such as low organic matter content, soil acidification, and poor soil management. Organic manures are considered to be a soil conservation measure that decreases soil degradation and acidity. This study aimed to evaluate the impacts of soil organic amendments on the improvement of soil fertility and pomelo productivity. Two soil amendments, namely, chicken manure (CM) and cow dung (CD), were investigated for a period of three years at three pomelo orchards. The soil quality was assessed in two depths (0-20 and 20-50 cm), including the soil pH, electrical conductivity (EC), total nitrogen (Ntot), available phosphorus (Pavail), soil organic matter (SOM), bulk density (BD), and exchangeable cations (Ca, Mg, and K). The results indicated that CD and CM improved soil fertility in topsoil layer (0-20 cm) due to an increase in soil pH, SOM, exchangeable Ca, Ntot, and Pavail. In addition, soil BD significantly reduced after CD and CM were supplied in the three consecutive years of study. The soil quality properties that significantly affected pomelo yield were SOM, Ntot, Pavail, and soil BD. Thus, these soil qualities may be considered as key factors for determining and assessing soil quality in fruit orchards in the VMD. More studies on the influence of organic manures on nutrient uptake and pomelo fruit quality are warranted.


Asunto(s)
Citrus , Productos Agrícolas , Estiércol , Suelo , Animales , Bovinos , Pollos , Nitrógeno/metabolismo , Fósforo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA