Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 356: 120655, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513589

RESUMEN

High boron (B) stress degrades the soil environment and reduces plant productivity. Sugar beet has a high B demand and potential for remediation of B-toxic soils. However, the mechanism regarding the response of sugar beet plants and rhizosphere soil microbiome to high B stress is not clear. In the potted soil experiment, we set different soil effective B environments (0.5, 5, 10, 30, 50, and 100 mg kg-1) to study the growth status of sugar beets under different B concentrations, as well as the characteristics of soil enzyme activity and microbial community changes. The results showed that sugar beet growth was optimal at 5 mg kg-1 of B. Exceeding this concentration the tolerance index decreased. The injury threshold EC20 was reached at an available B concentration of 35.8 mg kg-1. Under the treatment of 100 mg kg-1, the B accumulation of sugar beet reached 0.22 mg plant-1, and the tolerance index was still higher than 60%, which had not yet reached the lethal concentration of sugar beet. The abundance of Acidobacteriota, Chloroflexi and Patescibacteria increased, which was beneficial to the resistance of sugar beet to high B stress. In summary, under high B stress sugar beet had strong tolerance, enhanced capacity for B uptake and enrichment, and changes in soil microbial community structure. This study provides a theoretical basis for clarifying the mechanism of sugar beet resistance to high B stress and soil remediation.


Asunto(s)
Beta vulgaris , Suelo , Suelo/química , Beta vulgaris/metabolismo , Beta vulgaris/microbiología , Boro , Rizosfera , Verduras , Azúcares/metabolismo
2.
J Environ Manage ; 353: 120159, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38310797

RESUMEN

Nicosulfuron is a common herbicide used to control weeds in maize fields. In northeast China, sugar beet is often grown as a subsequent crop after maize, and its frequently suffers from soil nicosulfuron residue damage, but the related toxicity evaluation and photosynthetic physiological mechanisms are not clear. Therefore, we experimented to evaluate the impacts of nicosulfuron residues on beet growth, photochemical properties, and antioxidant defense system. The results showed that when the nicosulfuron residue content reached 0.3 µg kg-1, it inhibited the growth of sugar beet. When it reached 36 µg kg-1 (GR50), the growth stagnated. Compared to the control group, a nicosulfuron residue of 36 µg kg-1 significantly decreased beet plant height (70.93 %), leaf area (91.85 %), dry weights of shoot (70.34 %) and root (32.70 %). It also notably reduced the potential photochemical activity (Fv/Fo) by 12.41 %, the light energy absorption performance index (PIabs) by 46.09 %, and light energy absorption (ABS/CSm) by 6.56 %. It decreased the capture (TRo/CSm) by 9.30 % and transferred energy (ETo/CSm) by 16.13 % per unit leaf cross-section while increasing the energy flux of heat dissipation (DIo/CSm) by 22.85 %. This ultimately impaired the photochemical capabilities of PSI and PSII, leading to a reduction in photosynthetic performance. Furthermore, nicosulfuron increased malondialdehyde (MDA) content while decreasing superoxide dismutase (SOD) and catalase (CAT) activities. In conclusion, this research clarified the toxicity risk level, lethal dose, and harm mechanism of the herbicide nicosulfuron residue. It provides a theoretical foundation for the rational use of herbicides in agricultural production and sugar beet planting management.


Asunto(s)
Beta vulgaris , Herbicidas , Piridinas , Compuestos de Sulfonilurea , Beta vulgaris/metabolismo , Fotosíntesis/fisiología , Antioxidantes/metabolismo , Zea mays , Herbicidas/toxicidad , Azúcares
3.
Plant Physiol Biochem ; 206: 108277, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104397

RESUMEN

Sugar beet, a zinc-loving crop, is increasingly limited by zinc deficiency worldwide. Foliar zinc application is an effective and convenient way to supplement zinc fertilizer. However, the regulatory mechanism of foliar zinc spraying on sugar beet leaf photosynthetic characteristics remains unclear. Therefore, we investigated the effects of foliar ZnSO4·7H2O application (0, 0.1%, 0.2%, and 0.4%) on the photosynthetic performance of sugar beet leaves under controlled hydroponic conditions. The results indicated that a foliar spray of 0.2% Zn fertilizer was optimal for promoting sugar beet leaf growth. This concentration significantly reduced the leaf shape index of sugar beet, notably increasing leaf area, leaf mass ratio, and specific leaf weight. Foliar spraying of Zn (0.2%) substantially elevated the Zn content in sugar beet leaves, along with calcium (Ca) and magnesium (Mg) contents. Consequently, this led to an increase in the potential photochemical activity of PSII (Fv/Fo) (by 6.74%), net photosynthetic rate (Pn) (11.39%), apparent electron transport rate (ETR) (11.43%), actual photochemical efficiency of PSⅡ (Y (Ⅱ)) (11.46%), photochemical quenching coefficient (qP) (15.49%), and total chlorophyll content (25.17%). Ultimately, this increased sugar beet leaf dry matter weight (11.30%). In the cultivation and management of sugar beet, the application of 0.2% Zn fertilizer (2.88 mg plant-1) exhibited the potential to enhance Zn and Mg contents in sugar beet, improve photochemical properties, stimulate leaf growth, and boost light assimilation capacity. Our result suggested the foliar application of Zn might be a useful strategy for sugar beet crop management.


Asunto(s)
Beta vulgaris , Hojas de la Planta , Zinc , Calcio , Clorofila , Fertilizantes , Magnesio , Fotosíntesis , Hojas de la Planta/química , Azúcares , Zinc/farmacología
4.
Ecotoxicol Environ Saf ; 248: 114295, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36402074

RESUMEN

This sugar beet acts as a soil remediator in areas where there are high levels of boron (B) in the soil, since it has a high requirement of boron (B) for growth, and has strong resistance to high B levels. Although B toxicity in different plants has been widely researched, little is known about the response of photosystem II (PSII) activity in sugar beet leaves to B toxicity at present. To clarify the growth and photosynthetic physiological response of sugar beet to B toxicity, the effects of different concentrations of H3BO3 (0.05, 1.5, 2.5,3.5 mM) on the growth, photosynthetic characteristics and antioxidant defense system of sugar beet seedlings were investigated by hydroponic experiments. In the present study, high B stress inhibited the growth of sugar beet and significantly decreased the biomass of the plants. There was a remarkable increase in the accumulation of B in the shoots, which affected photosynthesis and decreased the photosynthetic pigments. As B toxicity increased, leaf PSII activities and maximum photochemical efficiency of PSII (Fv/Fm) showed a tendency to decrease; at the same time, the photosynthetic performance index based on absorbed light energy (PIABS) decreased as well. Meanwhile, the energy allocation parameters of the PSII reaction center were changed, the light energy utilization capacity and the energy used for electron transfer were reduced and the thermal dissipation was increased at the same time. Furthermore, B toxicity decreased catalase (CAT) activity, increased peroxidase (POD) and superoxide dismutase (SOD) activities, and increased malondialdehyde (MDA) accumulation. According to the results obtained in this study, high B concentrations reduced the rate of photosynthesis and fluorescence, thus weakened antioxidant defense systems, and therefore inhibited the growth of sugar beet plants. Thus, in high B areas, sugar beet possesses excellent tolerance to high B levels and has a high B translocation capacity, so it can be used as a phytoremediation tool. This study provides a basis for the feasibility of sugar beet resistant to high B environments.


Asunto(s)
Beta vulgaris , Complejo de Proteína del Fotosistema II , Boro/toxicidad , Antioxidantes , Verduras , Suelo , Azúcares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA