Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Neurochem Res ; 48(7): 2138-2147, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36808020

RESUMEN

Cuprizone causes consistent demyelination and oligodendrocyte damage in the mouse brain. Cu,Zn-superoxide dismutase 1 (SOD1) has neuroprotective potential against various neurological disorders, such as transient cerebral ischemia and traumatic brain injury. In this study, we investigated whether SOD1 has neuroprotective effects against cuprizone-induced demyelination and adult hippocampal neurogenesis in C57BL/6 mice, using the PEP-1-SOD1 fusion protein to facilitate the delivery of SOD1 protein into hippocampal neurons. Eight weeks feeding of cuprizone-supplemented (0.2%) diets caused a significant decrease in myelin basic protein (MBP) expression in the stratum lacunosum-moleculare of the CA1 region, the polymorphic layer of the dentate gyrus, and the corpus callosum, while ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia showed activated and phagocytic phenotypes. In addition, cuprizone treatment reduced proliferating cells and neuroblasts as shown using Ki67 and doublecortin immunostaining. Treatment with PEP-1-SOD1 to normal mice did not show any significant changes in MBP expression and Iba-1-immunoreactive microglia. However, Ki67-positive proliferating cells and doublecortin-immunoreactive neuroblasts were significantly decreased. Simultaneous treatment with PEP-1-SOD1 and cuprizone-supplemented diets did not ameliorate the MBP reduction in these regions, but mitigated the increase of Iba-1 immunoreactivity in the corpus callosum and alleviated the reduction of MBP in corpus callosum and proliferating cells, not neuroblasts, in the dentate gyrus. In conclusion, PEP-1-SOD1 treatment only has partial effects to reduce cuprizone-induced demyelination and microglial activation in the hippocampus and corpus callosum and has minimal effects on proliferating cells in the dentate gyrus.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Animales , Ratones , Cuprizona/toxicidad , Superóxido Dismutasa-1/metabolismo , Microglía/metabolismo , Antígeno Ki-67/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/genética , Ratones Endogámicos C57BL , Hipocampo/metabolismo , Neurogénesis , Cuerpo Calloso , Proteínas de Dominio Doblecortina , Zinc/metabolismo , Modelos Animales de Enfermedad
2.
Nutrients ; 13(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072678

RESUMEN

The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.


Asunto(s)
Antiinflamatorios , Antioxidantes , Productos Biológicos , Enfermedades Metabólicas , Animales , Suplementos Dietéticos , Humanos , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Ratones , Nanopartículas , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas
3.
Nutrients ; 13(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33435613

RESUMEN

Gynura procumbens has been used in Southeast Asia for the treatment of hypertension, hyperglycemia, and skin problems induced by ultraviolet irradiation. Although considerable studies have reported the biological properties of Gynura procumbens root extract (GPE-R), there are no studies on the effects of GPE-R in brain damages, for example following brain ischemia. In the present study, we screened the neuroprotective effects of GPE-R against ischemic damage and neuroinflammation in the hippocampus based on behavioral, morphological, and biological approaches. Gerbils received oral administration of GPE-R (30 and 300 mg/kg) every day for three weeks and 2 h after the last administration, ischemic surgery was done by occlusion of both common carotid arteries for 5 min. Administration of 300 mg/kg GPE-R significantly reduced ischemia-induced locomotor hyperactivity 1 day after ischemia. Significantly more NeuN-positive neurons were observed in the hippocampal CA1 regions of 300 mg/kg GPE-R-treated animals compared to those in the vehicle-treated group 4 days after ischemia. Administration of GPE-R significantly reduced levels of pro-inflammatory cytokines such as interleukin-1ß, -6, and tumor necrosis factor-α 6 h after ischemia/reperfusion. In addition, activated microglia were significantly decreased in the 300 mg/kg GPE-R-treated group four days after ischemia/reperfusion compared to the vehicle-treated group. These results suggest that GPE-R may be one of the possible agents to protect neurons from ischemic damage by reducing inflammatory responses.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Región CA1 Hipocampal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Raíces de Plantas/química , Animales , Peso Corporal , Isquemia Encefálica/patología , Isquemia Encefálica/cirugía , Región CA1 Hipocampal/patología , Citocinas , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Gerbillinae , Hipocampo/efectos de los fármacos , Masculino , Microglía , Daño por Reperfusión/patología
4.
Chin J Nat Med ; 17(6): 424-434, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31262455

RESUMEN

To examine the effects of Populus tomentiglandulosa (PT) extract on the expressions of antioxidant enzymes and neurotrophic factors in the cornu ammonis 1 (CA1) region of the hippocampus at 5 min after inducing transient global cerebral ischemia (TGCI) in gerbils, TGCI was induced by occlusion of common carotid arteries for 5 min. Before ischemic surgery, 200 mg·kg-1 PT extract was orally administrated once daily for 7 d. We performed neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B staining. Furthermore, we determined in situ production of superoxide anion radical, expression levels of SOD1 and SOD2 as antioxidant enzymes and brain-derived neurotrophic factor (BDNF) and insulin-like growth factor I (IGF-I) as neurotrophic factors. Pretreatment with 200 mg·kg-1 PT extract prevented neuronal death (loss). Furthermore, pretreatment with 200 mg·kg-1 PT extract significantly inhibited the production of superoxide anion radical, increased expressions of SODs and maintained expressions of BDNF and IGF-I. Such increased expressions of SODs were maintained in the neurons after IRI. In summary, pretreated PT extract can significantly increase levels of SODs and protect the neurons against TGCI, suggesting that PT can be a useful natural agent to protect against TGCI.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Extractos Vegetales/administración & dosificación , Populus/química , Células Piramidales/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Superóxido Dismutasa/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Región CA1 Hipocampal/metabolismo , Gerbillinae , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Fármacos Neuroprotectores/administración & dosificación , Células Piramidales/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Superóxido Dismutasa/genética , Regulación hacia Arriba/efectos de los fármacos
5.
BMC Complement Altern Med ; 19(1): 94, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31046739

RESUMEN

BACKGROUND: The brain is susceptible to methylmercury toxicity, which causes irreversible damage to neurons and glia and the leaf extract Dendropanax morbifera Léveille (DML) has various biological functions in the nervous system. In this study, we examined the effects of DML on mercury-induced proliferating cells and differentiated neuroblasts. METHODS: Dimethylmercury (5 µg/kg) and galantamine (5 mg/kg) was administered intraperitoneally and/or DML (100 mg/kg) was orally to 7-week-old rats every day for 36 days. One hour after the treatment, novel object recognition test was examined. In addition, spatial probe tests were conducted on the 6th day after 5 days of continuous training in the Morris swim maze. Thereafter, the rats were euthanized for immunohistochemical staining analysis with Ki67 and doublecortin and measurement for acetylcholinesterase (AChE) activity. RESULTS: Dimethylmercury-treated rats showed reduced discrimination index in novel object recognition test and took longer to find the platform than did control group. Compared with dimethylmercury treatment alone, supplementation with DML or galatamine significantly ameliorated the reduction of discrimination index and reduced the time spent to find the platform. In addition, the number of platform crossings was lower in the dimethylmercury-treated group than in controls, while the administration of DML or galantamine significantly increased the number of crossings than did dimethylmercury treatment alone. Proliferating cells and differentiated neuroblasts, assessed by Ki67 and doublecortin immunohistochemical staining was significantly decreased in the dimethylmercury treated group versus controls. Supplementation with DML or galantamine significantly increased the number of proliferating cells and differentiated neuroblasts in the dentate gyrus. In addition, treatment with dimethylmercury significantly increased AChE activity in hippocampal homogenates, while treatment with dimethylmercury+DML or dimethylmercury+galantamine significantly ameliorated this increase. CONCLUSIONS: These results suggest that DML may be a functional food that improves dimethylmercury-induced memory impairment and ameliorates dimethylmercury-induced reduction in proliferating cells and differentiated neuroblasts, and demonstrates corresponding activation of AChE activity in the dentate gyrus.


Asunto(s)
Araliaceae/química , Giro Dentado/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Neurogénesis/efectos de los fármacos , Extractos Vegetales/farmacología , Memoria Espacial/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Giro Dentado/citología , Proteína Doblecortina , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Extractos Vegetales/química , Hojas de la Planta/química , Ratas , Ratas Sprague-Dawley
6.
J Chem Neuroanat ; 98: 27-40, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30951822

RESUMEN

Recently, there have been reports that chronic insomnia acts as an insult in the brain, causing memory loss through the production of ROS, inflammation, and, Alzheimer's disease if persistent. Insomnia remains the leading cause of sleep disturbance and as such has serious implications for public health. Patients with Alzheimer's disease are also known to suffer from severe sleep disturbance. Meanwhile, vitexin is a key ingredient in Passiflora incarnata L (passion flower, PF) extract, which is known to help with sleep. This medicinal plant has been used as a folk remedy for sedation, anxiety and sleep since centuries ago, but the standardization work has not been done and the extent of the effect has not been clearly demonstrated. For this reason, we tried to test the possibility that repeated administration of PF could improve the memory by promoting hippocampal neurogenesis at the DBA/2 mice known have inherited sleep disorders, as well as preventive effects of Alzheimer's disease. Here, we found that vitexin, which is the main bioactive component of ethanol extracts from leaves and fruits (ratio; 8:2) of PF, confirmed the improvement of neurogenesis (DCX) of DBA/2 mice repeated PF oral administration by immunohistochemistry (IHC) and western blot analysis. PF-treated group showed increased the neurotrophic factor (BDNF) in the hippocampus compared with that of vehicle-treated group, but the inflammation markers Iba-1 (microglial marker) and COX-2 were inconsistent between the groups. However, we found COX-2 signal is essential for hippocampal neurogenesis according to the additional IHC experiments using COX-2 inhibitor and pIkappaB have shown. In addition, although prescription sleeping pills have been reported to show significant changes in appetite and metabolic rate from time to time, no changes in the feeding behavior, body weight, metabolic rate and body composition of the animals were observed by administration of PF. Interestingly, we found that short-term oral administration of PF displayed improved memory according to the water maze test. Quantitative analysis of Tau protein, which is a marker of Alzheimer's disease, was performed in the SD rats and DBA/2 mice by repeated PF oral administration and pTau/Tau values were significantly decreased in PF-treated group than vehicle-treated group. In conclusion, our results suggest that PF lead high hippocampal neurogenesis in the animals even in inherited sleep-disturbed animals. The increased hippocampal neurogenesis functionally enhanced memory and learning functions by repeated PF oral administration. These results identify PF as a potential therapy for enhancing memory functions and prevention of Alzheimer's disease through actions on the hippocampus.


Asunto(s)
Memoria/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Passiflora , Extractos Vegetales/farmacología , Trastornos del Sueño-Vigilia , Animales , Proteína Doblecortina , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos DBA , Ratones Endogámicos ICR , Ratas , Ratas Sprague-Dawley
7.
J Med Food ; 22(4): 344-354, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30990755

RESUMEN

Methionine and choline, which are essential nutrients for mammalian animals, are important for cell composition, as metabolic factors, and for the synthesis of other biochemical compounds for cell metabolism. Methionine and choline, which are methyl group donors, play key roles in the homocysteine cycle and neuronal development and maintenance. In this study, we investigated the effects of methionine and choline deficiency on adult hippocampal neurogenesis and neural stem cell (NSC) lineage in the adult stage. For this study, we divided C57BL/6 mice into three groups as follows: normal chow (NC)-fed, methionine choline sufficient (MCS) diet-fed, and methionine choline deficient (MCD) diet-fed mice. The mice were fed the NC, MCS, and MCD diets for 4 weeks from the age of 8 weeks. MCD diet-fed mice showed significantly decreased proliferation and differentiation of NSCs when compared with the NC diet-fed or MCS diet-fed mice. In addition, the survival of newly generated neurons was critically impaired in the MCD diet-fed mice. We confirmed a decrease in the proliferation and differentiation of NSCs after 4 weeks of MCD diet administration, compared with that in NC- and MCS diet-fed mice. MCD diet critically impaired NSCs survival and survival of neurons during the 4 weeks. The number of phosphorylated cyclic AMP response element binding (pCREB) protein immunoreactive nuclei was decreased in the MCD diet-fed mice compared with that in the NC- or MCS diet-fed group. These results suggest that suitable levels of methionine and choline are essential for the maintenance of hippocampal neurogenesis in mice and affect NSC proliferation and differentiation through phosphorylation of CREB.


Asunto(s)
Deficiencia de Colina/complicaciones , Hipocampo/citología , Metionina/deficiencia , Neurogénesis , Animales , Proliferación Celular , Supervivencia Celular , Colina/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-30363659

RESUMEN

Hyperlipidemia is a risk factor for atherosclerotic cardiovascular disease and is a major public health concern. Allium hookeri (AH) is an Allium species containing high levels of bioactive organosulfur compounds such as methiin and cycloalliin. AH exerts hypolipidemic effects in animals fed a high-fat diet. However, there exists little information on the mechanisms underlying these effects. To address this issue, we used a metabolomic approach based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry to identify factors mediating the lipid-lowering effects of AH. Principal component and partial least-squares discriminant analyses of serum metabolome profiles revealed 25 metabolites as potential biomarkers for the effects of AH on lipid levels. These compounds were predominantly phospholipids, including phosphatidylcholines (PCs), lysoPCs, and lysophosphatidylethanolamines. Glycerophospholipid metabolism was identified as a significantly enriched pathway. These results provide mechanistic insight into the antihyperlipidemic effects of AH and evidence for its efficacy as a therapeutic agent.

9.
Chin Med J (Engl) ; 131(6): 689-695, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29521292

RESUMEN

BACKGROUND: Glehnia littoralis has been used for traditional Asian medicine, which has diverse therapeutic activities. However, studies regarding neurogenic effects of G. littoralis have not yet been considered. Therefore, in this study, we examined effects of G. littoralis extract on cell proliferation, neuroblast differentiation, and the maturation of newborn neurons in the hippocampus of adult mice. METHODS: A total of 39 male ICR mice (12 weeks old) were randomly assigned to vehicle-treated and 100 and 200 mg/kg G. littoralis extract-treated groups (n = 13 in each group). Vehicle and G. littoralis extract were orally administrated for 28 days. To examine neurogenic effects of G. littoralis extract, we performed immunohistochemistry for 5-bromo-2-deoxyuridine (BrdU, an indicator for cell proliferation) and doublecortin (DCX, an immature neuronal marker) and double immunofluorescence staining for BrdU and neuronal nuclear antigen (NeuN, a mature neuronal marker). In addition, we examined expressional changes of brain-derived neurotrophic factor (BDNF) and its major receptor tropomyosin-related kinase B (TrkB) using Western blotting analysis. RESULTS: Treatment with 200 mg/kg, not 100 mg/kg, significantly increased number of BrdU-immunoreactive (+) and DCX+ cells (48.0 ± 3.1 and 72.0 ± 3.8 cells/section, respectively) in the subgranular zone (SGZ) of the dentate gyrus (DG) and BrdU+/NeuN+ cells (17.0 ± 1.5 cells/section) in the granule cell layer as well as in the SGZ. In addition, protein levels of BDNF and TrkB (about 232% and 244% of the vehicle-treated group, respectively) were significantly increased in the DG of the mice treated with 200 mg/kg of G. littoralis extract. CONCLUSION: G. littoralis extract promots cell proliferation, neuroblast differentiation, and neuronal maturation in the hippocampal DG, and neurogenic effects might be closely related to increases of BDNF and TrkB proteins by G. littoralis extract treatment.


Asunto(s)
Apiaceae/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Giro Dentado/citología , Extractos Vegetales/farmacología , Receptor trkB/metabolismo , Animales , Western Blotting , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Hipocampo/citología , Hipocampo/efectos de los fármacos , Inmunohistoquímica , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis/efectos de los fármacos , Neuropéptidos/metabolismo
10.
Lab Anim Res ; 34(4): 239-247, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30671111

RESUMEN

Bacopa monnieri is a medicinal plant with a long history of use in Ayurveda, especially in the treatment of poor memory and cognitive deficits. In the present study, we hypothesized that Bacopa monnieri extract (BME) can improve memory via increased cell proliferation and neuroblast differentiation in the dentate gyrus. BME was administered to 7-week-old mice once a day for 4 weeks and a novel object recognition memory test was performed. Thereafter, the mice were euthanized followed by immunohistochemistry analysis for Ki67, doublecortin (DCX), and phosphorylated cAMP response element-binding protein (CREB), and western blot analysis of brain-derived neurotrophic factor (BDNF). BME-treated mice showed moderate increases in the exploration of new objects when compared with that of familiar objects, leading to a significant higher discrimination index compared with vehicle-treated mice. Ki67 and DCX immunohistochemistry showed a facilitation of cell proliferation and neuroblast differentiation following the administration of BME in the dentate gyrus. In addition, administration of BME significantly elevated the BDNF protein expression in the hippocampal dentate gyrus, and increased CREB phosphorylation in the dentate gyrus. These data suggest that BME improves novel object recognition by increasing the cell proliferation and neuroblast differentiation in the dentate gyrus, and this may be closely related to elevated levels of BDNF and CREB phosphorylation in the dentate gyrus.

11.
Neurochem Res ; 42(11): 3149-3159, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28770438

RESUMEN

In the present study, we investigated the concentration-dependent effect of zinc (Zn) supplementation on the adult hippocampus in a high-fat diet (HFD)-fed obese mouse model. Four-weeks after HFD- and control diet (CD)-feeding, mice were provided with low (15 ppm) or high (60 ppm) doses of Zn in their drinking water for additional 4 more weeks along with their respective diets. Compared to the CD-fed mice, HFD-feeding elicited the reduction of neurogenic markers such as nestin, Ki67, doublecortin (DCX), and 5-bromo-2'-deoxyuridine (BrdU) in the dentate gyrus. Additionally, HFD-feeding reduced the levels of synaptic markers (synaptophysin and N-methyl-D-aspartate receptor) and brain-derived neurotrophic factor (BDNF), while lipid peroxidation was significantly increased in the hippocampus of HFD-fed mice. Against detrimental effects of high-dose Zn, low-dose Zn supplementation in CD-fed mice did not yield any remarkable changes in these parameters. Interestingly, administration of low doses of Zn to HFD-induced obese mice prominently ameliorated HFD-induced changes in neurogenic, synaptic plasticity markers and BDNF levels as well as lipid peroxidation in the hippocampus. In contrast, high-dose Zn supplementation in HFD-fed mice exacerbated the reduction of markers for neurogenesis and synaptic plasticity as well as BDNF levels, but not 4-HNE levels, in the hippocampus. These results suggest that low-dose Zn supplementation in obese mice could reverse the HFD-induced reduction in neurogenic and synaptic marker proteins in the hippocampus by reducing lipid peroxidation and improving BDNF expression, while high-dose Zn supplementation exacerbates the reduction of neurogenesis by affecting synaptic markers and BDNF levels in the hippocampus.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Hipocampo/metabolismo , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Zinc/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Proteína Doblecortina , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos
12.
Chin Med J (Engl) ; 130(15): 1796-1803, 2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-28748852

RESUMEN

BACKGROUND: Glehnia littoralis, as a traditional herbal medicine to heal various health ailments in East Asia, displays various therapeutic properties including antioxidant effects. However, neuroprotective effects of G. littoralis against cerebral ischemic insults have not yet been addressed. Therefore, in this study, we first examined its neuroprotective effects in the hippocampus using a gerbil model of transient global cerebral ischemia (TGCI). METHODS: Gerbils were subjected to TGCI for 5 min. G. littoralis extract (GLE; 100 and 200 mg/kg) was administrated orally once daily for 7 days before ischemic surgery. Neuroprotection was examined by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. Gliosis was observed by immunohistochemistry for glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1. For neuroprotective mechanisms, immunohistochemistry for superoxide dismutase (SOD) 1 and brain-derived neurotrophic factor (BDNF) was done. RESULTS: Pretreatment with 200 mg/kg of GLE protected pyramidal neurons in the cornu ammonis 1 (CA1) area from ischemic insult area (F = 29.770, P < 0.05) and significantly inhibited activations of astrocytes (F = 22.959, P < 0.05) and microglia (F = 44.135, P < 0.05) in the ischemic CA1 area. In addition, pretreatment with GLE significantly increased expressions of SOD1 (F = 28.561, P < 0.05) and BDNF (F = 55.298, P < 0.05) in CA1 pyramidal neurons of the sham- and ischemia-operated groups. CONCLUSIONS: Our findings indicate that pretreatment with GLE can protect neurons from ischemic insults, and we suggest that its neuroprotective mechanism may be closely associated with increases of SOD1 and BDNF expressions as well as attenuation of glial activation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Extractos Vegetales/farmacología , Superóxido Dismutasa/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Gerbillinae , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Inmunohistoquímica , Superóxido Dismutasa/genética
13.
J Vet Sci ; 18(2): 119-127, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27515272

RESUMEN

Recently, we reported that Artemisia annua (AA) has anti-adipogenic properties in vitro and in vivo. Reduction of adipogenesis by AA treatment may dampen systemic inflammation and protect neurons from cytokine-induced damage. Therefore, the present study was undertaken to assess whether AA increases neuronal maturation by reducing inflammatory responses, such as those mediated by cyclooxygenase 2 (COX-2). Mice were fed normal chow or a high-fat diet with or without chronic daily oral administration of AA extract (0.2 g/10 mL/kg) for 4 weeks; then, changes in their hippocampal dentate gyri were measured via immunohistochemistry/immunofluorescence staining for bromodexoxyuridine, doublecortin, and neuronal nuclei, markers of neuronal maturation, and quantitative western blotting for COX-2 and Iba-1, in order to assess correlations between systemic inflammation (interleukin-6) and food type. Additionally, we tested the effect of AA in an Alzheimer's disease model of Caenorhabditis elegans and uncovered a potential benefit. The results show that chronic AA dosing significantly increases neuronal maturation, particularly in the high-fat diet group. This effect was seen in the absence of any changes in COX-2 levels in mice given the same type of food, pointing to the possibility of alternate anti-inflammatory pathways in the stimulation of neurogenesis and neuro-maturation in a background of obesity.


Asunto(s)
Ciclooxigenasa 2/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Neuronas/efectos de los fármacos , Obesidad/veterinaria , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Administración Oral , Animales , Artemisia annua , Diferenciación Celular/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/veterinaria , Técnica del Anticuerpo Fluorescente/veterinaria , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Extractos Vegetales/administración & dosificación
14.
BMC Complement Altern Med ; 16(1): 452, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27829466

RESUMEN

BACKGROUND: Cadmium leads to learning and memory impairment. Dendropanax morbifera Léveille stem extract (DMS) reduces cadmium-induced oxidative stress in the hippocampus. We investigated the effects of DMS on cadmium-induced impairments in memory in rats. METHODS: Cadmium (2 mg/kg), with or without DMS (100 mg/kg), was orally administered to 7-week-old Sprague-Dawley rats for 28 days. Galantamine (5 mg/kg), an acetylcholinesterase inhibitor, was intraperitoneally administered as a positive control. A novel-object recognition test was conducted 2 h after the final administration. Cell proliferation and neuroblast differentiation were assessed by immunohistochemistry for Ki67 and doublecortin, respectively. Acetylcholinesterase activity in the synaptosomes of the hippocampus was also measured based on the formation of 5,5'-dithio-bis-acid nitrobenzoic acid. RESULTS: An increase in the preferential exploration time of new objects was observed in both vehicle-treated and cadmium-treated rats. In addition, DMS administration increased cell proliferation and neuroblast differentiation in the dentate gyrus of vehicle-treated and cadmium-treated rats. Acetylcholinesterase activity in the hippocampal synaptosomes was also significantly higher in the DMS-treated group than in the vehicle-treated group. The effect of DMS on cadmium-induced memory impairment and cell proliferation in the hippocampus was comparable to that of galantamine. CONCLUSIONS: These results suggest that DMS ameliorates cadmium-induced memory impairment via increase in cell proliferation, neuroblast differentiation, and acetylcholinesterase activity in the hippocampus. The consumption of DMS may reduce cadmium-induced neurotoxicity in animals or humans.


Asunto(s)
Araliaceae/química , Cadmio/toxicidad , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Neurogénesis/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteína Doblecortina , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Masculino , Memoria/efectos de los fármacos , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Neuronas/citología , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
15.
BMC Complement Altern Med ; 16(1): 431, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27809818

RESUMEN

BACKGROUND: In the present study, we investigated the effects of oil products from two Allium species: Allium sativum (garlic) and Allium hookeri (Chinese chives) on cell proliferation and neuroblast differentiation in the mouse dentate gyrus. METHODS: Using corn oil as a vehicle, the essential oil from garlic (10 ml/kg), or Chinese chives (10 ml/kg) was administered orally to 9-week-old mice once a day for 3 weeks. One hour following the last treatment, a novel object recognition test was conducted and the animals were killed 2 h after the test. RESULTS: In comparison to the vehicle-treated group, garlic essential oil (GO) treatment resulted in significantly increased exploration time and discrimination index during the novel object recognition test, while Chinese chives essential oil (CO) reduced the exploration time and discrimination index in the same test. In addition, the number of Ki67-immunoreactive proliferating cells and doublecortin-immunoreactive neuroblasts significantly increased in the dentate gyrus of GO-treated animals. However, administration of CO significantly decreased cell proliferation and neuroblast differentiation. Administration of GO significantly increased brain-derived neurotrophic factor (BDNF) levels and decreased acetylcholinesterase (AChE) activity in the hippocampal homogenates. In contrast, administration of CO decreased BDNF protein levels and had no significant effect on AChE activity, compared to that in the vehicle-treated group. CONCLUSIONS: These results suggest that GO significantly improves novel object recognition as well as increases cell proliferation and neuroblast differentiation, by modulating hippocampal BDNF protein levels and AChE activity, while CO impairs novel object recognition and decreases cell proliferation and neuroblast differentiation, by reducing BDNF protein levels in the hippocampus.


Asunto(s)
Acetilcolinesterasa/metabolismo , Allium/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Animales , Conducta Animal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Giro Dentado/química , Giro Dentado/citología , Conducta Exploratoria/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL
16.
J Med Food ; 18(12): 1333-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26177123

RESUMEN

In a previous study, we demonstrated that a Valeriana officinalis extract could attenuate increases in serum corticosterone levels in a mouse model of physical and psychological stress. In addition, our results showed that the extract could modulate serotonin (5-HT) and norepinephrine (NE) turnover in the hippocampus and amygdala region. In this study, we intended to investigate the effects of valerenic acid (VA), the main component of V. officinalis extract, on corticosterone levels in serum in normal mice and monoamine turnover in hippocampus-amygdala homogenates in a mouse model of physical and psychological stress. To determine the minimum dose of VA for antianxiety effect, eight-week-old ICR mice were orally administered VA (0.2, 0.5, and 1.0 mg/kg/0.3 mL) once daily for 3 weeks to probe for immobility time and serum corticosterone levels. At a VA dose of 0.5 and 1.0 mg/kg, animals showed a decrease in the duration of immobility time and serum corticosterone levels. To confirm the antianxiety effect of VA, eight-week-old ICR mice received VA at a dose of 0.5 mg/kg, orally, once daily for 3 weeks, before being subjected to physical or psychological stress for 3 days, in a specially designed communication box, followed by estimation of levels of monoamines and their metabolites in the hippocampus-amygdala region. In conclusion, VA administration at 0.5 mg/kg can mitigate the physical and psychological stress response by decreasing the turnover of 5-HT to 5-hydroxyindoleacetic acid and NE to 3-methoxy-4-hydroxyphenylethyleneglycol sulfate in the hippocampus and amygdala.


Asunto(s)
Ansiedad/metabolismo , Encéfalo/efectos de los fármacos , Indenos/farmacología , Norepinefrina/metabolismo , Serotonina/metabolismo , Sesquiterpenos/farmacología , Estrés Psicológico/metabolismo , Valeriana/química , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Corticosterona/sangre , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Indenos/uso terapéutico , Masculino , Ratones Endogámicos ICR , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Sesquiterpenos/uso terapéutico , Estrés Fisiológico , Estrés Psicológico/prevención & control
17.
BMC Complement Altern Med ; 15: 247, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26201852

RESUMEN

BACKGROUND: Dendropanax morbifera Léveille has been employed for the treatment of infectious diseases using folk medicine. In this study, we evaluated the antioxidant effects of a leaf extract of Dendropanax morbifera Léveille in the hippocampus of mercury-exposed rats. METHODS: Seven-week-old Sprague-Dawley rats received a daily intraperitoneal injection of 5 µg/kg dimethylmercury and/or oral Dendropanax morbifera Léveille leaf extract (100 mg/kg) for 4 weeks. Animals were sacrificed 2 h after the last dimethylmercury and/or leaf extract treatment. Mercury levels were measured in homogenates of hippocampal tissue, a brain region that is vulnerable to mercury toxicity. In addition, we measured reactive oxygen species production, lipid peroxidation levels, and antioxidant levels in these hippocampal homogenates. RESULTS: Treatment with Dendropanax morbifera Léveille leaf extract significantly reduced mercury levels in hippocampal homogenates and attenuated the dimethylmercury-induced increase in the production of reactive oxygen species and formation of malondialdehyde. In addition, this leaf extract treatment significantly reversed the dimethylmercury-induced reduction in the hippocampal activities of Cu, Zn-superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase. CONCLUSION: These results suggest that a leaf extract of Dendropanax morbifera Léveille had strong antioxidant effects in the hippocampus of mercury-exposed rats.


Asunto(s)
Antioxidantes/administración & dosificación , Araliaceae/química , Hipocampo/efectos de los fármacos , Mercurio/toxicidad , Extractos Vegetales/administración & dosificación , Animales , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Hipocampo/enzimología , Hipocampo/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Hojas de la Planta/química , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
18.
J Med Food ; 18(6): 642-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25785762

RESUMEN

As a medicinal plant, the roots of Valeriana officinalis have been used as a sedative and tranquilizer. In the present study, we evaluated the neuroprotective effects of valerian root extracts (VE) on the hippocampal CA1 region of gerbils after 5 min of transient cerebral ischemia. Gerbils were administered VE orally once a day for 3 weeks, subjected to ischemia/reperfusion injury, and continued on VE for 3 weeks. The administration of 100 mg/kg VE (VE100 group) significantly reduced the ischemia-induced spontaneous motor hyperactivity 1 day after ischemia/reperfusion. Four days after ischemia/reperfusion, animals treated with VE showed abundant cresyl violet-positive neurons in the hippocampal CA1 region when compared to the vehicle or 25 mg/kg VE-treated groups. In addition, the VE treatment markedly decreased microglial activation in the hippocampal CA1 region 4 days after ischemia. Compared to the other groups, the VE100 group showed the lowest level of lipid peroxidation during the first 24 h after ischemia/reperfusion. In summary, the findings in this study suggest that pretreatment with VE has protective effects against ischemic injury in the hippocampal pyramidal neurons by decreasing microglial activation and lipid peroxidation.


Asunto(s)
Hipocampo/efectos de los fármacos , Ataque Isquémico Transitorio/tratamiento farmacológico , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Daño por Reperfusión/prevención & control , Valeriana , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Región CA1 Hipocampal/efectos de los fármacos , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patología , Ataque Isquémico Transitorio/metabolismo , Ataque Isquémico Transitorio/patología , Masculino , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Raíces de Plantas , Células Piramidales , Daño por Reperfusión/metabolismo
19.
J Vet Med Sci ; 77(2): 167-73, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25342636

RESUMEN

In the current study, we investigated whether electroacupuncture (EA) can inhibit pathological reductions in neurogenesis. Zucker diabetic fatty (ZDF) rats at 7 weeks of age were anesthetized with zoletil, and sham-acupuncture or EA at the Zusanli (ST36) and Baihui (GV20) acupoints was administered once a day for 5 weeks. In the ZDF group that received sham-EA (ZDF-Sham group), the blood glucose level was significantly increased together with age as compared to the control littermates [Zucker lean control (ZLC) rat]. In contrast, proliferating cells and differentiated neuroblasts were significantly decreased in the ZDF-Sham group compared to the ZLC group. Although EA treatment decreased blood glucose levels, this was not statistically significant when compared to blood glucose levels changes in the ZDF-Sham group. However, proliferating cells and differentiated neuroblasts were significantly increased with EA in ZDF rats as compared to those in the ZDF-Sham group. Brain-derived neurotrophic factor (BDNF) levels were significantly decreased in hippocampal homogenates of ZDF-Sham group compared to those in the ZLC group. The EA treatment significantly increased the BDNF levels compared to those in the ZDF-Sham group, and BDNF levels in this group were similar to those in the ZLC group. These results suggest that EA at ST36 and GV20 can ameliorate the reductions in proliferating cells and differentiated neuroblasts in the dentate gyrus induced by type-2 diabetes without significantly reducing blood glucose levels with increasing BDNF levels.


Asunto(s)
Terapia por Acupuntura/métodos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Giro Dentado/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Estimulación Eléctrica , Neuronas/fisiología , Animales , Glucemia , Factor Neurotrófico Derivado del Encéfalo/genética , Diferenciación Celular , Proliferación Celular , Giro Dentado/citología , Femenino , Masculino , Neuronas/citología , Ratas , Ratas Zucker
20.
BMC Complement Altern Med ; 14: 476, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25495725

RESUMEN

BACKGROUND: In this study, we investigate the effects of valerian root extracts (VE) on physical and psychological stress responses by utilizing a communication box. METHODS: Eight-week-old ICR mice received oral administration of VE (100 mg/kg/0.5 ml) or equal volume of distilled water in every day for 3 weeks prior to being subjected to physical or psychological stress for 3 days, which are induced by communication box developed for physical electric shock and psychological stress by nociceptive stimulation-evoked responses. The stress condition was assessed by forced swimming test and serum corticosterone levels. In addition, norepinephrine (NE), serotonin (5-HT), and their metabolites such as 3-methoxy-4-hydroxyphenylethyleneglycol sulfate (MHPG-SO4) and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the hippocampus and amygdala at 1 h after final stress condition, respectively. RESULTS: Immobility time and corticosterone levels were significantly increased in both the physical and psychological stress groups compared to the control group. The administration of VE significantly reduced these parameters in both the physical and psychological stress groups. In addition, compared to the control group, physical and psychological stress groups showed significantly increased levels of MHPG-SO4 and 5-HIAA in the hippocampus and amygdala, respectively. The administration of VE significantly suppressed the increase of MHPG-SO4 and 5-HIAA in the two stress groups. CONCLUSION: These results suggest that VE can suppress physical and psychological stress responses by modulating the changes in 5-HT and NE turnover in the hippocampus and amygdala.


Asunto(s)
Monoaminas Biogénicas/metabolismo , Encéfalo/efectos de los fármacos , Neurotransmisores/uso terapéutico , Dolor/tratamiento farmacológico , Fitoterapia , Estrés Psicológico/tratamiento farmacológico , Valeriana , Amígdala del Cerebelo/metabolismo , Animales , Encéfalo/metabolismo , Corticosterona/sangre , Electrochoque , Hipocampo/metabolismo , Masculino , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/metabolismo , Ratones , Ratones Endogámicos ICR , Neurotransmisores/farmacología , Norepinefrina/metabolismo , Dolor/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Raíces de Plantas , Serotonina/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Psicológico/metabolismo , Natación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA