Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 7044, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487926

RESUMEN

Osteoporosis affects millions of people worldwide. As such, this study assessed the macrophage-dependent in vitro anti-osteoporosis, phytochemical profile and hepatotoxicity effects in zebrafish larvae of the stem bark extracts of P. africana. Mouse bone marrow macrophages (BMM) cells were plated in 96-well plates and treated with P. africana methanolic bark extracts at concentrations of 0, 6.25, 12.5, 25, and 50 µg/ml for 24 h. The osteoclast tartrate-resistant acid phosphatase (TRAP) activity and cell viability were measured. Lipopolysaccharides (LPS) induced Nitrite (NO) and interleukin-6 (IL-6) production inhibitory effects of P. africana bark extracts (Methanolic, 150 µg/ml) and ß-sitosterol (100 µM) were conducted using RAW 264.7 cells. Additionally, inhibition of IL-1ß secretion and TRAP activity were determined for chlorogenic acid, catechin, naringenin and ß-sitosterol. For toxicity study, zebrafish larvae were exposed to different concentrations of 25, 50, 100, and 200 µg/ml P. africana methanolic, ethanolic and water bark extracts. Dimethyl sulfoxide (0.05%) was used as a negative control and tamoxifen (5 µM) and dexamethasone (40 µM or 80 µM) were positive controls. The methanolic P. africana extracts significantly inhibited (p < 0.001) TRAP activity at all concentrations and at 12.5 and 25 µg/ml, the extract exhibited significant (p < 0.05) BMM cell viability. NO production was significantly inhibited (all p < 0.0001) by the sample. IL-6 secretion was significantly inhibited by P. africana methanolic extract (p < 0.0001) and ß-sitosterol (p < 0.0001) and further, chlorogenic acid and naringenin remarkably inhibited IL-1ß production. The P. africana methanolic extract significantly inhibited RANKL-induced TRAP activity. The phytochemical study of P. africana stem bark revealed a number of chemical compounds with anti-osteoporosis activity. There was no observed hepatocyte apoptosis in the liver of zebrafish larvae. In conclusion, the stem bark of P. africana is non-toxic to the liver and its inhibition of TRAP activity makes it an important source for future anti-osteoporosis drug development.


Asunto(s)
Osteoporosis , Prunus africana , Animales , Ácido Clorogénico/análisis , Cromatografía de Gases y Espectrometría de Masas , Humanos , Interleucina-6/análisis , Metanol/análisis , Ratones , Osteoporosis/tratamiento farmacológico , Fitoquímicos/análisis , Fitoquímicos/farmacología , Corteza de la Planta/química , Extractos Vegetales/química , Células RAW 264.7 , Pez Cebra
2.
Artículo en Inglés | MEDLINE | ID: mdl-33029177

RESUMEN

Osteoporosis is one of the main health problems in the world today characterized by low bone mass and deterioration in bone microarchitecture. In recent years, the use of natural products approach to treat it has been in the increase. In this study, in vitro antiosteoporosis activity and hepatotoxicity of P. jamasakura bark extracts were evaluated. Methods. Mouse bone marrow macrophage (BMM) cells were incubated with tartrate-resistant acid phosphate (TRAP) buffers and p-nitrophenyl phosphate and cultured with different P. jamasakura bark extracts at concentrations of 0, 6.25, 12.5, 25, and 50 µg/ml in the presence of the receptor activator of nuclear factor kappa-Β ligand (RANKL) for 6 days. The osteoclast TRAP activity and cell viability were measured. Nitric oxide (NO) assay was conducted using murine macrophage-like RAW 264.7 cells treated with P. jamasakura ethanolic and methanolic bark extracts at concentrations of 0, 6.25, 12.5, 25, 50, 100, and 200 µg/ml. For hepatotoxicity assessment, zebrafish larvae were exposed to P. jamasakura bark extracts, 0.05% dimethyl sulfoxide as a negative control, and 5 µM tamoxifen as a positive control. The surviving larvae were anesthetized and assessed for hepatocyte apoptosis. Results. TRAP activity was significantly inhibited (p < 0.001) at all concentrations of P. jamasakura extracts compared to the control treatment. At 50 µg/ml, both ethanolic and methanolic extracts of P. jamasakura exhibited significant (p < 0.01) BMM cell viability compared to the control treatment. P. jamasakura ethanolic and methanolic extracts had significant inhibitory (p < 0.01) effects on lipopolysaccharide (LPS)-induced NO production at 200 µg/ml and exhibited significant (p < 0.01) and (p < 0.05) stimulative effects, respectively, on RAW 264.7 cell viability. No overt hepatotoxicity was observed in the liver of zebrafish larvae in any of the treatments. Conclusion. The TRAP activity of P. jamasakura bark gives a foundation for further studies to enhance future development of antiosteoporosis drug.

3.
Bioorg Med Chem Lett ; 30(13): 127201, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32386982

RESUMEN

A series of aryl sulfide derivatives was synthesized and evaluated for their anti-melanogenic activities. Several compounds, including 3e, 3i and 3q exhibited good anti-melanogenic activities. Among the derivatives, compound 3i showed good inhibitory effects against melanin synthesis and showed no toxicity in reconstituted human eye and skin tissues.


Asunto(s)
Melaninas/antagonistas & inhibidores , Preparaciones para Aclaramiento de la Piel/farmacología , Sulfuros/farmacología , Animales , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Humanos , Preparaciones para Aclaramiento de la Piel/síntesis química , Preparaciones para Aclaramiento de la Piel/toxicidad , Sulfuros/síntesis química , Sulfuros/toxicidad , Pez Cebra
4.
J Transl Med ; 17(1): 195, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182117

RESUMEN

BACKGROUND: Although methyl-tertiary butyl ether (MTBE) is the only clinical topical agent for gallstone dissolution, its use is limited by its side effects mostly arising from a relatively low boiling point (55 °C). In this study, we developed the gallstone-dissolving compound containing an aromatic moiety, named 2-methoxy-6-methylpyridine (MMP) with higher boiling point (156 °C), and compared its effectiveness and toxicities with MTBE. METHODS: The dissolubility of MTBE and MMP in vitro was determined by placing human gallstones in glass containers with either solvent and, then, measuring their dry weights. Their dissolubility in vivo was determined by comparing the weights of solvent-treated gallstones and control (dimethyl sulfoxide)-treated gallstones, after directly injecting each solvent into the gallbladder in hamster models with cholesterol and pigmented gallstones. RESULTS: In the in vitro dissolution test, MMP demonstrated statistically higher dissolubility than did MTBE for cholesterol and pigmented gallstones (88.2% vs. 65.7%, 50.8% vs. 29.0%, respectively; P < 0.05). In the in vivo experiments, MMP exhibited 59.0% and 54.3% dissolubility for cholesterol and pigmented gallstones, respectively, which were significantly higher than those of MTBE (50.0% and 32.0%, respectively; P < 0.05). The immunohistochemical stains of gallbladder specimens obtained from the MMP-treated hamsters demonstrated that MMP did not significantly increase the expression of cleaved caspase 9 or significantly decrease the expression of proliferation cell nuclear antigen. CONCLUSIONS: This study demonstrated that MMP has better potential than does MTBE in dissolving gallstones, especially pigmented gallstones, while resulting in lesser toxicities.


Asunto(s)
Cálculos Biliares/tratamiento farmacológico , Fármacos Gastrointestinales/administración & dosificación , Piridinas/administración & dosificación , Solventes/administración & dosificación , Administración Tópica , Animales , Células CHO , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Cricetulus , Evaluación Preclínica de Medicamentos/métodos , Embrión no Mamífero , Femenino , Cálculos Biliares/patología , Fármacos Gastrointestinales/efectos adversos , Humanos , Mesocricetus , Ratones , Ratones Endogámicos ICR , Células 3T3 NIH , Piridinas/efectos adversos , Solventes/efectos adversos , Células Vero , Pez Cebra
5.
J Dermatol Sci ; 89(2): 165-171, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29191393

RESUMEN

BACKGROUND: The demand for anti-melanogenic agents is increasing due to the unwanted side effects of current treatments. To find an effective anti-melanogenic agent, we used zebrafish as a whole animal model for phenotype-based drug and cosmetic discovery screening. OBJECTIVES: The aim of this study was to identify and explore a small molecule that could be used for skin-whitening cosmetics. METHODS: Using zebrafish embryos, we examined the effects of 1000 compounds on zebrafish development and pigmentation. Pigmentation production was assessed by tyrosinase (TYR) enzymatic activity and melanin contents. Pigmentation marker expression in the human melanoma cell line HMV-II was analyzed by western blot. We also tested reconstituted human skin tissue and analyzed KDZ-001 with computational molecular modeling. RESULTS: We identified three compounds that affected the pigmentation of developing melanophores in zebrafish. Among them, we identified KDZ-001, a novel anti-melanogenic agent, which strongly inhibits melanin synthesis in the developing melanophores of zebrafish, HMV-II cells, and reconstituted human skin with no toxicity. We found that KDZ-001 directly inhibits TYR enzymatic activity. Notably, computational molecular modeling of KDZ-001 suggested that its interaction with copper ions in the active site of TYR is essential for melanin synthesis, further demonstrating that KDZ-001 mainly acts as a TYR inhibitor to synthesize melanin. CONCLUSION: KDZ-001 inhibits melanin synthesis and has a potential for use in skin-whitening cosmetics.


Asunto(s)
Melaninas/antagonistas & inhibidores , Melanocitos/efectos de los fármacos , Monofenol Monooxigenasa/antagonistas & inhibidores , Preparaciones para Aclaramiento de la Piel/farmacología , Pigmentación de la Piel/efectos de los fármacos , Animales , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Humanos , Melanocitos/metabolismo , Melanóforos/efectos de los fármacos , Melanóforos/metabolismo , Modelos Animales , Simulación del Acoplamiento Molecular , Piel/citología , Piel/efectos de los fármacos , Piel/metabolismo , Preparaciones para Aclaramiento de la Piel/química , Técnicas de Cultivo de Tejidos , Pez Cebra
6.
Biomed Res Int ; 2016: 1473578, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27563662

RESUMEN

MicroRNA-122 (miRNA-122), also known as liver-specific miRNA, has recently been shown to be a potent biomarker in response to liver injury in mammals. The objective of this study was to examine its expression in response to toxicant treatment and acute liver damage, using the zebrafish system as an alternative model organism. For the hepatotoxicity assay, larval zebrafish were arrayed in 24-well plates. Adult zebrafish were also tested and arrayed in 200 mL cages. Animals were exposed to liver toxicants (tamoxifen or acetaminophen) at various doses, and miRNA-122 expression levels were analyzed using qRT-PCR in dissected liver, brain, heart, and intestine, separately. Our results showed no significant changes in miRNA-122 expression level in tamoxifen-treated larvae; however, miRNA-122 expression was highly induced in tamoxifen-treated adults in a tissue-specific manner. In addition, we observed a histological change in adult liver (0.5 µM) and cell death in larval liver (5 µM) at different doses of tamoxifen. These results indicated that miRNA-122 may be utilized as a liver-specific biomarker for acute liver toxicity in zebrafish.


Asunto(s)
Bioensayo/métodos , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Evaluación Preclínica de Medicamentos/métodos , MicroARNs/genética , Pruebas de Toxicidad/métodos , Pez Cebra/genética , Acetaminofén/toxicidad , Animales , Biomarcadores/análisis , Tamoxifeno
7.
Phytother Res ; 29(7): 1073-80, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25869918

RESUMEN

Bone is maintained by osteoclast-mediated resorption and osteoblast-mediated formation. Recently, anti-osteoporotic activity of Saururus chinensis extract (SCE) and anti-osteoclastogenic activity of its components have been reported, but the effect of SCE on bone formation has not been studied well. Therefore, in this study, we investigated whether Saururus chinensis SCE exhibits in vitro osteogenic and in vivo bone-forming activity. extract strongly enhanced the bone morphogenetic protein (BMP)-2-stimulated induction of alkaline phosphatase, an early phase biomarker of osteoblast differentiation, in bi-potential mesenchymal progenitor C2C12 cells. In vitro osteogenic activity of SCE was accompanied by enhanced expression of BMP-2, BMP-4, BMP-7 and BMP-9 mRNA. In addition, a pharmacological inhibition study suggested the involvement of p38 activation in the osteogenic action of SCE. Moreover, the BMP dependency and the involvement of p38 activation in the osteogenic action of SCE were confirmed by the treatment of noggin, an antagonist of BMP. Saururus chinensis extract also exhibited to induce runt-related transcription factor 2 activation at the high concentration. Furthermore, the in vivo osteogenic activity of SCE was confirmed in zebrafish and mouse calvarial bone formation models, suggesting the possibility of its use for bone formation. In conclusion, we suggested that in vivo anti-osteoporotic activity of SCE could be because of its dual action in bone, anti-osteoclastogenic and anabolic activity.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Extractos Vegetales/farmacología , Saururaceae/química , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Ratones , Ratones Endogámicos ICR , Pez Cebra , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA