Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Neurol ; 263: 200-13, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25263581

RESUMEN

Postnatal glucocorticoids (GCs) are widely used in the prevention of chronic lung disease in premature infants. Their pharmacologic use is associated with neurodevelopmental delay and cerebral palsy. However, the effect of GC dose and preparation (dexamethasone versus betamethasone) on short and long-term neurological outcomes remains undetermined, and the mechanisms of GC-induced brain injury are unclear. We hypothesized that postnatal GC would induce hypomyelination and motor impairment in a preparation- and dose-specific manner, and that GC receptor (GR) inhibition might restore myelination and neurological function in GC-treated animals. Additionally, GC-induced hypomyelination and neurological deficit might be transient. To test our hypotheses, we treated prematurely delivered rabbit pups with high (0.5mg/kg/day) or low (0.2mg/kg/day) doses of dexamethasone or betamethasone. Myelin basic protein (MBP), oligodendrocyte proliferation and maturation, astrocytes, transcriptomic profile, and neurobehavioral functions were evaluated. We found that high-dose GC treatment, but not low-dose, reduced MBP expression and impaired motor function at postnatal day 14. High-dose dexamethasone induced astrogliosis, betamethasone did not. Mifepristone, a GR antagonist, reversed dexamethasone-induced myelination, but not astrogliosis. Both GCs inhibited oligodendrocyte proliferation and maturation. Moreover, high-dose dexamethasone altered genes associated with myelination, cell-cycle, GR, and mitogen-activated protein kinase. Importantly, GC-induced hypomyelination, gliosis, and motor-deficit, observed at day 14, completely recovered by day 21. Hence, high-dose, but not low-dose, postnatal GC causes reversible reductions in myelination and motor functions. GC treatment induces hypomyelination by GR-dependent genomic mechanisms, but astrogliosis by non-genomic mechanisms. GC-induced motor impairment and neurodevelopmental delay might be transient and recover spontaneously in premature infants.


Asunto(s)
Encéfalo/efectos de los fármacos , Glucocorticoides/efectos adversos , Vaina de Mielina/efectos de los fármacos , Animales , Animales Recién Nacidos , Betametasona/administración & dosificación , Betametasona/efectos adversos , Western Blotting , Encéfalo/patología , Dexametasona/administración & dosificación , Dexametasona/efectos adversos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Gliosis/inducido químicamente , Gliosis/patología , Glucocorticoides/administración & dosificación , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Vaina de Mielina/patología , Conejos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Glucocorticoides/metabolismo
2.
Biophys J ; 90(1): 24-41, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16214872

RESUMEN

We describe a two-dimensional stochastic model of intercellular Ca(2+) wave (ICW) spread in glia that includes contributions of external stimuli, ionotropic and metabotropic P2 receptors, exo- and ecto-nucleotidases, second messengers, and gap junctions. In this model, an initial stimulus evokes ATP and UTP release from a single cell. Agonists diffuse and are degraded both in bulk solution and at cell surfaces. Ca(2+) elevation in individual cells is determined by bound agonist concentrations s and by number and features of P2 receptors summed with that generated by IP(3) diffusing through gap junction channels. Variability of ICWs is provided by randomly distributing a predetermined density of cells in a rectangular grid and by randomly selecting within intervals values characterizing the extracellular compartment, individual cells, and interconnections with neighboring cells. Variability intervals were obtained from experiments on astrocytoma cells transfected to express individual P2 receptors and/or the gap junction protein connexin43. The simulation program (available as Supplementary Material) permits individual alteration of ICW components, allowing comparison of simulations with data from cells expressing connexin43 and/or various P2 receptor subtypes. Such modeling is expected to be useful for testing phenomenological hypotheses and in understanding consequences of alteration of system components under experimental or pathological conditions.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Neuroglía/metabolismo , Adenosina Trifosfato/química , Algoritmos , Animales , Astrocitos/metabolismo , Astrocitoma/metabolismo , Biofisica/métodos , Comunicación Celular , Membrana Celular/metabolismo , Células Cultivadas , Conexina 43/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Uniones Comunicantes , Modelos Biológicos , Modelos Estadísticos , Modelos Teóricos , Nucleotidasas/metabolismo , Purinas/química , Pirimidinas/química , Receptores Purinérgicos P2/metabolismo , Transducción de Señal , Procesos Estocásticos , Factores de Tiempo , Transfección , Uridina Trifosfato/química
3.
Physiol Genomics ; 22(3): 292-307, 2005 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-15928208

RESUMEN

Chronic constant hypoxia (CCH), such as in pulmonary diseases or high altitude, and chronic intermittent hypoxia (CIH), such as in sleep apnea, can lead to major changes in the heart. Molecular mechanisms underlying these cardiac alterations are not well understood. We hypothesized that changes in gene expression could help to delineate such mechanisms. The current study used a neonatal mouse model in CCH or CIH combined with cDNA microarrays to determine changes in gene expression in the CCH or CIH mouse heart. Both CCH and CIH induced substantial alterations in gene expression. In addition, a robust right ventricular hypertrophy and cardiac enlargement was found in CCH- but not in CIH-treated mouse heart. On one hand, upregulation in RNA and protein levels of eukaryotic translation initiation factor-2alpha and -4E (eIF-2alpha and eIF-4E) was found in CCH, whereas eIF-4E was downregulated in 1- and 2-wk CIH, suggesting that eIF-4E is likely to play an important role in the cardiac hypertrophy observed in CCH-treated mice. On the other hand, the specific downregulation of heart development-related genes (e.g., notch gene homolog-1, MAD homolog-4) and the upregulation of proteolysis genes (e.g., calpain-5) in the CIH heart can explain the lack of hypertrophy in CIH. Interestingly, apoptosis was enhanced in CCH but not CIH, and this was correlated with an upregulation of proapoptotic genes and downregulation of anti-apoptotic genes in CCH. In summary, our results indicate that 1) the pattern of gene response to CCH is different from that of CIH in mouse heart, and 2) the identified expression differences in certain gene groups are helpful in dissecting mechanisms responsible for phenotypes observed.


Asunto(s)
Regulación de la Expresión Génica , Hipoxia , Miocardio/metabolismo , Animales , Apoptosis , Western Blotting , Peso Corporal , ADN Complementario/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Factor 2 Eucariótico de Iniciación/biosíntesis , Factor 4E Eucariótico de Iniciación/biosíntesis , Corazón , Hematócrito , Hipertrofia , Etiquetado Corte-Fin in Situ , Ratones , Microscopía , Miocardio/patología , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Temperatura , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA