Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 88(15): 8278-96, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24829341

RESUMEN

UNLABELLED: Influenza virus neuraminidase (NA) is an interesting target of small-molecule antiviral drugs. We isolated a set of H5N1 NA-specific single-domain antibodies (N1-VHHm) and evaluated their in vitro and in vivo antiviral potential. Two of them inhibited the NA activity and in vitro replication of clade 1 and 2 H5N1 viruses. We then generated bivalent derivatives of N1-VHHm by two methods. First, we made N1-VHHb by genetically joining two N1-VHHm moieties with a flexible linker. Second, bivalent N1-VHH-Fc proteins were obtained by genetic fusion of the N1-VHHm moiety with the crystallizable region of mouse IgG2a (Fc). The in vitro antiviral potency against H5N1 of both bivalent N1-VHHb formats was 30- to 240-fold higher than that of their monovalent counterparts, with 50% inhibitory concentrations in the low nanomolar range. Moreover, single-dose prophylactic treatment with bivalent N1-VHHb or N1-VHH-Fc protected BALB/c mice against a lethal challenge with H5N1 virus, including an oseltamivir-resistant H5N1 variant. Surprisingly, an N1-VHH-Fc fusion without in vitro NA-inhibitory or antiviral activity also protected mice against an H5N1 challenge. Virus escape selection experiments indicated that one amino acid residue close to the catalytic site is required for N1-VHHm binding. We conclude that single-domain antibodies directed against influenza virus NA protect against H5N1 virus infection, and when engineered with a conventional Fc domain, they can do so in the absence of detectable NA-inhibitory activity. IMPORTANCE: Highly pathogenic H5N1 viruses are a zoonotic threat. Outbreaks of avian influenza caused by these viruses occur in many parts of the world and are associated with tremendous economic loss, and these viruses can cause very severe disease in humans. In such cases, small-molecule inhibitors of the viral NA are among the few treatment options for patients. However, treatment with such drugs often results in the emergence of resistant viruses. Here we show that single-domain antibody fragments that are specific for NA can bind and inhibit H5N1 viruses in vitro and can protect laboratory mice against a challenge with an H5N1 virus, including an oseltamivir-resistant virus. In addition, plant-produced VHH fused to a conventional Fc domain can protect in vivo even in the absence of NA-inhibitory activity. Thus, NA of influenza virus can be effectively targeted by single-domain antibody fragments, which are amenable to further engineering.


Asunto(s)
Antivirales/uso terapéutico , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Infecciones por Orthomyxoviridae/prevención & control , Anticuerpos de Dominio Único/uso terapéutico , Animales , Antivirales/inmunología , Modelos Animales de Enfermedad , Femenino , Subtipo H5N1 del Virus de la Influenza A/inmunología , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Anticuerpos de Dominio Único/inmunología , Resultado del Tratamiento
2.
Antiviral Res ; 92(3): 389-407, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21939690

RESUMEN

In 1989, a new type of antibody was identified, first in the sera of dromedaries and later also in all other species of the Camelidae family. These antibodies do not contain a light chain and also lack the first constant heavy domain. Today it is still unclear what the evolutionary advantage of such heavy chain-only antibodies could be. In sharp contrast, the broad applicability of the isolated variable antigen-binding domains (VHH) was rapidly recognized, especially for the development of therapeutic proteins, called Nanobodies(®). Here we summarize first some of the unique characteristics and features of VHHs. These will next be described in the context of different experimental therapeutic applications of Nanobodies against different viruses: HIV, Hepatitis B virus, influenza virus, Respiratory Syncytial virus, Rabies virus, FMDV, Poliovirus, Rotavirus, and PERVs. Next, the diagnostic application of VHHs (Vaccinia virus, Marburg virus and plant Tulip virus X), as well as an industrial application (lytic lactococcal 936 phage) will be described. In addition, the described data show that monovalent Nanobodies can possess unique characteristics not observed with conventional antibodies. The straightforward formatting into bivalent, multivalent, and/or multispecific Nanobodies allowed tailoring molecules for potency and cross-reactivity against viral targets with high sequence diversity.


Asunto(s)
Anticuerpos Antivirales/uso terapéutico , Cadenas Pesadas de Inmunoglobulina/uso terapéutico , Región Variable de Inmunoglobulina/uso terapéutico , Virosis/diagnóstico , Virosis/tratamiento farmacológico , Virus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Camélidos del Nuevo Mundo/inmunología , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/inmunología , Virosis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA