Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life Sci ; 336: 122328, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061132

RESUMEN

AIMS: Inflammatory Bowel Disease (IBD) is associated with systemic iron deficiency and has been managed with iron supplements which cause adverse side effects. Conversely, some reports highlight iron depletion to ameliorate IBD. The underlying intestinal response and comparative benefit of iron depletion and supplementation in IBD is unknown. The aims of this work were to characterize and compare the effects of iron supplementation and iron depletion in IBD. MAIN METHODS: IBD was induced in Drosophila melanogaster using 3 % dextran sodium sulfate (DSS) in diet for 7 days. Using this model, we investigated the impacts of acute iron depletion (using bathophenanthroline disulfonate, BPS) and supplementation (using ferrous sulphate, FS), before and after IBD induction, on gut iron homeostasis, cell death, gut permeability, inflammation, antioxidant defence, antimicrobial response and several fly phenotypes. KEY FINDINGS: DSS decreased fly mass (p < 0.001), increased gut permeability (p < 0.001) and shortened lifespan (p = 0.035) compared to control. The DSS-fed flies also showed significantly elevated lipid peroxidation (p < 0.001), and the upregulated expression of apoptotic marker- drice (p < 0.001), tight junction protein - bbg (p < 0.001), antimicrobial peptide - dpta (p = 0.002) and proinflammatory cytokine - upd2 (p < 0.001). BPS significantly (p < 0.05) increased fly mass and lifespan, decreased gut permeability, decreased lipid peroxidation and decreased levels of drice, bbg, dpta and upd2 in IBD flies. This iron chelation (using BPS) showed better protection from DSS-induced IBD than iron supplementation (using FS). Preventive and curative interventions, by BPS or FS, also differed in outcomes. SIGNIFICANCE: This may inform precise management strategies aimed at tackling IBD and its recurrence.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Colitis/inducido químicamente , Drosophila , Drosophila melanogaster , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Hierro/metabolismo , Suplementos Dietéticos , Quelantes del Hierro/farmacología , Sulfato de Dextran , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colon/metabolismo
2.
Arch Physiol Biochem ; 129(3): 752-770, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33569991

RESUMEN

Although the prevalence of metabolic syndrome (MetS), a cluster of cardiometabolic risk factors that predispose to the development of type 2 diabetes mellitus and cardiovascular diseases, is increasing globally, there is no broad-spectrum agent for its holistic treatment. Natural plant-derived products with a wide spectrum of biological activities are currently being explored as alternatives in the management of diseases. Artemisia species are a heterozygous group of plants of the Compositae family that possess several health benefits. Here we highlight their antidiabetic, anti-obesity, anti-hyperlipidaemic, hepatoprotective and cardioprotective properties among others. These activities have been linked to the presence of phytochemicals that act on several molecular targets to exert their effects and the species of Artemisia are considered to be relatively safe. Artemisia species offer significant anti-MetS activity and thus are strong therapeutic candidates for the effective management of MetS.


Asunto(s)
Artemisia , Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Síndrome Metabólico/tratamiento farmacológico , Diabetes Mellitus Tipo 2/etiología , Artemisia/química , Obesidad/complicaciones , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control
3.
Planta Med ; 88(8): 650-663, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34000739

RESUMEN

Parental dietary choices and/or nutritional interventions in the offspring are critical to early life development, especially during the periods of active developmental plasticity in the offspring. Exposure to a high-fructose, high-fat diet during the fetal or neonatal period predisposes the affected individuals to the development of one or more features of metabolic syndrome, such as dyslipidemia, insulin resistance, diabetes, and associated cardiovascular diseases, later in their life. Owing to the increasing global prevalence of metabolic syndrome and multiple side effects that accompany conventional medicines, much attention is directed towards medicinal plants and phytochemicals as alternative interventions. Several studies have investigated the potential of natural agents to prevent programmed metabolic syndrome. This present review, therefore, highlights an inextricable relationship between the administration of medicinal plants or phytochemicals during the intrauterine or neonatal period, and the prevention of metabolic dysfunction in adulthood, while exploring the mechanisms by which they exert such an effect. The review also identifies plant products as a novel approach to the prevention and management of metabolic syndrome.


Asunto(s)
Productos Biológicos , Resistencia a la Insulina , Síndrome Metabólico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Fructosa/toxicidad , Síndrome Metabólico/prevención & control
4.
Front Physiol ; 12: 684464, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393812

RESUMEN

The gastrointestinal tract (GIT) is the first point of contact for ingested substances and thus represents a direct interface with the external environment. Apart from food processing, this interface plays a significant role in immunity and contributes to the wellbeing of individuals through the brain-gut-microbiota axis. The transition of life from the in utero environment, to suckling and subsequent weaning has to be matched by phased development and maturation of the GIT; from an amniotic fluid occupancy during gestation, to the milk in the suckling state and ultimately solid food ingestion at weaning. This phased maturation of the GIT can be affected by intrinsic and extrinsic factors, including diet. Despite the increasing dietary inclusion of medicinal plants and phytochemicals for health benefits, a dearth of studies addresses their impact on gut maturation. In this review we focus on some recent findings mainly on the positive impact of medicinal plants and phytochemicals in inducing precocious maturation of the GIT, not only in humans but in pertinent animals. We also discuss Paneth cells as mediators and potential markers of GIT maturation.

5.
Front Pharmacol ; 12: 629935, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34012391

RESUMEN

The 2019 coronavirus disease (COVID-19) is a potentially fatal multisystemic infection caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Currently, viable therapeutic options that are cost effective, safe and readily available are desired, but lacking. Nevertheless, the pandemic is noticeably of lesser burden in African and Asian regions, where the use of traditional herbs predominates, with such relationship warranting a closer look at ethnomedicine. From a molecular viewpoint, the interaction of SARS-CoV-2 with angiotensin converting enzyme 2 (ACE2) is the crucial first phase of COVID-19 pathogenesis. Here, we review plants with medicinal properties which may be implicated in mitigation of viral invasion either via direct or indirect modulation of ACE2 activity to ameliorate COVID-19. Selected ethnomedicinal plants containing bioactive compounds which may prevent and mitigate the fusion and entry of the SARS-CoV-2 by modulating ACE2-associated up and downstream events are highlighted. Through further experimentation, these plants could be supported for ethnobotanical use and the phytomedicinal ligands could be potentially developed into single or combined preventive therapeutics for COVID-19. This will benefit researchers actively looking for solutions from plant bioresources and help lessen the burden of COVID-19 across the globe.

6.
J Trace Elem Med Biol ; 65: 126731, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33610057

RESUMEN

BACKGROUND: Zinc deficiency is associated with adverse effects on maternal health and pregnancy outcomes. These consequences have been reported over the years from zinc supplementation trials and observational studies whereby outcomes of maternal, foetal and infant health were measured. Owing to the importance of zinc in the functions of epigenetic enzymes, pre-clinical studies have shown that its deficiency could disrupt biological activities that involve epigenetic mechanisms in offspring. Thus, this review assessed the link between epigenetics and the effects of maternal zinc deficiency on the offspring's health in animal studies. METHODS: Research articles were retrieved without date restriction from PubMed, Web of Science, ScienceDirect, and Google Scholar databases, as well as reference lists of relevant articles. The search terms used were "zinc deficiency", "maternal zinc deficiency", "epigenetics", and "offspring." Six studies met the eligibility criteria and were reviewed. RESULTS: All the eligible studies reported maternal zinc deficiency and observed changes in epigenetic markers on the progeny during prenatal and postnatal stages of development. The main epigenetic markers reported were global and gene specific methylation and/ or acetylation. The epigenetic changes led to mortality, disruption in development, and risk of later life diseases. CONCLUSION: Maternal zinc deficiency is associated with epigenetic modifications in offspring, which induce pathologies and increase the risk of later life diseases. More research and insight into the epigenetic mechanisms could spring up new approaches to combat the associated disease conditions.


Asunto(s)
Epigénesis Genética/genética , Desarrollo Fetal/genética , Zinc/metabolismo , Animales , Humanos , Zinc/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA