Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Angew Chem Int Ed Engl ; 63(6): e202317487, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38100749

RESUMEN

Hydrogen sulfide (H2 S) is an endogenous gasotransmitter that plays important roles in redox signaling. H2 S overproduction has been linked to a variety of disease states and therefore, H2 S-depleting agents, such as scavengers, are needed to understand the significance of H2 S-based therapy. It is known that elevated H2 S can induce oxidative stress with elevated reactive oxygen species (ROS) formation, such as in H2 S acute intoxication. We explored the possibility of developing catalytic scavengers to simultaneously remove H2 S and ROS. Herein, we studied a series of selenium-based molecules as catalytic H2 S/H2 O2 scavengers. Inspired by the high reactivity of selenoxide compounds towards H2 S, 14 diselenide/monoselenide compounds were tested. Several promising candidates such as S6 were identified. Their activities in buffers, as well as in plasma- and cell lysate-containing solutions were evaluated. We also studied the reaction mechanism of this scavenging process. Finally, the combination of the diselenide catalyst and photosensitizers was used to achieve light-induced H2 S removal. These Se-based scavengers can be useful tools for understanding H2 S/ROS regulations.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Selenio , Especies Reactivas de Oxígeno , Estrés Oxidativo , Peróxido de Hidrógeno/farmacología
2.
Lasers Surg Med ; 55(6): 590-600, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37253390

RESUMEN

BACKGROUND AND OBJECTIVES: Approximately 50,000 emergency department visits per year due to carbon monoxide (CO) poisoning occur in the United States alone. Tissue hypoxia can occur at very low CO concentration exposures because CO binds with a 250-fold higher affinity than oxygen to hemoglobin. The most effective therapy is 100% hyperbaric oxygen (HBO) respiration. However, there are only a limited number of cases with ready accessibility to the specialized HBO chambers. In previous studies, we developed an extracorporeal veno-venous membrane oxygenator that facilitates exposure of blood to an external visible light source to photo-dissociate carboxyhemoglobin (COHb) and significantly increase CO removal from CO-poisoned blood (photo-extracorporeal veno-venous membrane oxygenator [p-ECMO]). One objective of this study was to describe in vitro experiments with different laser wavelength sources to compare CO elimination rates in a small unit-cell ECMO device integrated with a light-diffusing optical fiber. A second objective was to develop a mathematical model that predicts CO elimination rates in the unit-cell p-ECMO  device design upon which larger devices can be based. STUDY DESIGN/MATERIAL AND METHODS: Two small unit-cell p-ECMO devices consisted of a plastic capillary with a length and inside diameter of 10 cm and 1.15 mm, respectively. Either five (4-1 device) or seven (6-1 device) gas exchange tubes were placed in the plastic capillary and a light-diffusing fiber was inserted into one of the gas exchange tubes. Light from lasers emitting either 635 nm or 465 nm wavelengths was coupled into the light-diffusing fiber as oxygen flowed through the gas exchange membranes. To assess the ability of the device to remove CO from blood in vitro, the percent COHb reduction in a single pass through the device was assessed with and without light. The Navier Stokes equations, Carreau-Yesuda model, Boltzman equation for light distribution, and hemoglobin kinetic rate equations, including photo-dissociation, were combined in a mathematical model to predict COHb elimination in the experiments. RESULTS: For the unit-cell devices, the COHb removal rate increases with increased 635 nm laser power, increased blood time in the device, and greater gas exchange membrane surface-to-blood volume ratio. The 6-1 device COHb half-life versus that of the 4-1 device with 4 W at 635 nm light was 1.5 min versus 4.25 min, respectively. At 1 W laser power, 635 nm and 465 nm exhibited similar CO removal rates. The COHb half-life times of the 6-1 device were 1.25, 2.67, and 8.5 min at 635 nm (4 W), 465 nm (1 W), and 100% oxygen only, respectively. The mathematical model predicted the experimental results. An analysis of the in vivo COHb half-life of oxygen respiration therapy versus an adjunct therapy with a p-ECMO device and oxygen respiration shows a reduction from 90 min to as low as 10 min, depending on the device design. CONCLUSION: In this study, we experimentally studied and developed a mathematical model of a small unit-cell ECMO device integrated with a light-diffusing fiber illuminated with laser light. The unit-cell device forms the basis for a larger device and, in an adjunct therapy with oxygen respiration, has the potential to remove COHb at much higher rates than oxygen therapy alone. The mathematical model can be used to optimize the design in practical implementations to quickly and efficiently remove CO from CO-poisoned blood.


Asunto(s)
Intoxicación por Monóxido de Carbono , Humanos , Intoxicación por Monóxido de Carbono/terapia , Oxigenadores de Membrana , Hemoglobinas/análisis , Hemoglobinas/metabolismo , Carboxihemoglobina/análisis , Carboxihemoglobina/metabolismo , Oxígeno , Modelos Teóricos
3.
Arterioscler Thromb Vasc Biol ; 42(2): e61-e73, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34809448

RESUMEN

OBJECTIVE: Arterial stiffness is a risk factor for cardiovascular disease, including heart failure with preserved ejection fraction (HFpEF). MGP (matrix Gla protein) is implicated in vascular calcification in animal models, and circulating levels of the uncarboxylated, inactive form of MGP (ucMGP) are associated with cardiovascular disease-related and all-cause mortality in human studies. However, the role of MGP in arterial stiffness is uncertain. Approach and Results: We examined the association of ucMGP levels with vascular calcification, arterial stiffness including carotid-femoral pulse wave velocity (PWV), and incident heart failure in community-dwelling adults from the Framingham Heart Study. To further investigate the link between MGP and arterial stiffness, we compared aortic PWV in age- and sex-matched young (4-month-old) and aged (10-month-old) wild-type and Mgp+/- mice. Among 7066 adults, we observed significant associations between higher levels of ucMGP and measures of arterial stiffness, including higher PWV and pulse pressure. Longitudinal analyses demonstrated an association between higher ucMGP levels and future increases in systolic blood pressure and incident HFpEF. Aortic PWV was increased in older, but not young, female Mgp+/- mice compared with wild-type mice, and this augmentation in PWV was associated with increased aortic elastin fiber fragmentation and collagen accumulation. CONCLUSIONS: This translational study demonstrates an association between ucMGP levels and arterial stiffness and future HFpEF in a large observational study, findings that are substantiated by experimental studies showing that mice with Mgp heterozygosity develop arterial stiffness. Taken together, these complementary study designs suggest a potential role of therapeutically targeting MGP in HFpEF.


Asunto(s)
Proteínas de Unión al Calcio/sangre , Proteínas de la Matriz Extracelular/sangre , Insuficiencia Cardíaca/sangre , Rigidez Vascular , Animales , Presión Sanguínea , Proteínas de Unión al Calcio/genética , Proteínas de la Matriz Extracelular/genética , Femenino , Eliminación de Gen , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Humanos , Estudios Longitudinales , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Estudios Prospectivos , Volumen Sistólico , Proteína Gla de la Matriz
4.
Mol Genet Metab ; 133(1): 83-93, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33752971

RESUMEN

Leigh syndrome is a severe mitochondrial neurodegenerative disease with no effective treatment. In the Ndufs4-/- mouse model of Leigh syndrome, continuously breathing 11% O2 (hypoxia) prevents neurodegeneration and leads to a dramatic extension (~5-fold) in lifespan. We investigated the effect of hypoxia on the brain metabolism of Ndufs4-/- mice by studying blood gas tensions and metabolite levels in simultaneously sampled arterial and cerebral internal jugular venous (IJV) blood. Relatively healthy Ndufs4-/- and wildtype (WT) mice breathing air until postnatal age ~38 d were compared to Ndufs4-/- and WT mice breathing air until ~38 days old followed by 4-weeks of breathing 11% O2. Compared to WT control mice, Ndufs4-/- mice breathing air have reduced brain O2 consumption as evidenced by an elevated partial pressure of O2 in IJV blood (PijvO2) despite a normal PO2 in arterial blood, and higher lactate/pyruvate (L/P) ratios in IJV plasma revealed by metabolic profiling. In Ndufs4-/- mice, hypoxia treatment normalized the cerebral venous PijvO2 and L/P ratios, and decreased levels of nicotinate in IJV plasma. Brain concentrations of nicotinamide adenine dinucleotide (NAD+) were lower in Ndufs4-/- mice breathing air than in WT mice, but preserved at WT levels with hypoxia treatment. Although mild hypoxia (17% O2) has been shown to be an ineffective therapy for Ndufs4-/- mice, we find that when combined with nicotinic acid supplementation it provides a modest improvement in neurodegeneration and lifespan. Therapies targeting both brain hyperoxia and NAD+ deficiency may hold promise for treating Leigh syndrome.


Asunto(s)
Encéfalo/metabolismo , Complejo I de Transporte de Electrón/genética , Enfermedad de Leigh/metabolismo , NAD/genética , Oxígeno/metabolismo , Animales , Encéfalo/patología , Hipoxia de la Célula/fisiología , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/metabolismo , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , Metabolómica , Ratones , Mitocondrias , NAD/deficiencia , Enfermedades Neurodegenerativas , Respiración/genética
5.
Sci Transl Med ; 11(513)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31597752

RESUMEN

Inhaled carbon monoxide (CO) displaces oxygen from hemoglobin, reducing the capacity of blood to carry oxygen. Current treatments for CO-poisoned patients involve administration of 100% oxygen; however, when CO poisoning is associated with acute lung injury secondary to smoke inhalation, burns, or trauma, breathing 100% oxygen may be ineffective. Visible light dissociates CO from hemoglobin. We hypothesized that the exposure of blood to visible light while passing through a membrane oxygenator would increase the rate of CO elimination in vivo. We developed a membrane oxygenator with optimal characteristics to facilitate exposure of blood to visible light and tested the device in a rat model of CO poisoning, with or without concomitant lung injury. Compared to ventilation with 100% oxygen, the addition of extracorporeal removal of CO with phototherapy (ECCOR-P) doubled the rate of CO elimination in CO-poisoned rats with normal lungs. In CO-poisoned rats with acute lung injury, treatment with ECCOR-P increased the rate of CO removal by threefold compared to ventilation with 100% oxygen alone and was associated with improved survival. Further development and adaptation of this extracorporeal CO photo-removal device for clinical use may provide additional benefits for CO-poisoned patients, especially for those with concurrent acute lung injury.


Asunto(s)
Intoxicación por Monóxido de Carbono/terapia , Oxigenación por Membrana Extracorpórea/métodos , Fototerapia/métodos , Lesión Pulmonar Aguda/terapia , Animales , Monóxido de Carbono/metabolismo , Hemoglobinas/metabolismo , Masculino , Ratas
6.
Resuscitation ; 83(10): 1292-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22370005

RESUMEN

AIM OF THE STUDY: Sudden cardiac arrest (CA) is one of the leading causes of death worldwide. Previously we demonstrated that administration of sodium sulfide (Na(2)S), a hydrogen sulfide (H(2)S) donor, markedly improved the neurological outcome and survival rate at 24 h after CA and cardiopulmonary resuscitation (CPR) in mice. In this study, we sought to elucidate the mechanism responsible for the neuroprotective effects of Na(2)S and its impact on the long-term survival after CA/CPR in mice. METHODS: Adult male mice were subjected to potassium-induced CA for 7.5 min at 37°C whereupon CPR was performed with chest compression and mechanical ventilation. Mice received Na(2)S (0.55 mgkg(-1) i.v.) or vehicle 1 min before CPR. RESULTS: Mice that were subjected to CA/CPR and received vehicle exhibited a poor 10-day survival rate (4/12) and depressed neurological function. Cardiac arrest and CPR induced abnormal water diffusion in the vulnerable regions of the brain, as demonstrated by hyperintense diffusion-weighted imaging (DWI) 24 h after CA/CPR. Extent of hyperintense DWI was associated with matrix metalloproteinase 9 (MMP-9) activation, worse neurological outcomes, and poor survival rate at 10 days after CA/CPR. Administration of Na(2)S prevented the development of abnormal water diffusion and MMP-9 activation and markedly improved neurological function and long-term survival (9/12, P<0.05 vs. Vehicle) after CA/CPR. CONCLUSION: These results suggest that administration of Na(2)S 1 min before CPR improves neurological function and survival rate at 10 days after CA/CPR by preventing water diffusion abnormality in the brain potentially via inhibiting MMP-9 activation early after resuscitation.


Asunto(s)
Encéfalo/fisiopatología , Reanimación Cardiopulmonar , Paro Cardíaco/fisiopatología , Paro Cardíaco/terapia , Sulfuros/uso terapéutico , Animales , Difusión , Paro Cardíaco/mortalidad , Masculino , Ratones , Ratones Endogámicos C57BL , Tasa de Supervivencia , Resultado del Tratamiento
7.
Circulation ; 124(15): 1645-53, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21931083

RESUMEN

BACKGROUND: Sudden cardiac arrest (CA) is a leading cause of death worldwide. Breathing nitric oxide (NO) reduces ischemia/reperfusion injury in animal models and in patients. The objective of this study was to learn whether inhaled NO improves outcomes after CA and cardiopulmonary resuscitation (CPR). METHODS AND RESULTS: Adult male mice were subjected to potassium-induced CA for 7.5 minutes whereupon CPR was performed with chest compression and mechanical ventilation. One hour after CPR, mice were extubated and breathed air alone or air supplemented with 40 ppm NO for 23 hours. Mice that were subjected to CA/CPR and breathed air exhibited a poor 10-day survival rate (4 of 13), depressed neurological and left ventricular function, and increased caspase-3 activation and inflammatory cytokine induction in the brain. Magnetic resonance imaging revealed brain regions with marked water diffusion abnormality 24 hours after CA/CPR in mice that breathed air. Breathing air supplemented with NO for 23 hours starting 1 hour after CPR attenuated neurological and left ventricular dysfunction 4 days after CA/CPR and markedly improved 10-day survival rate (11 of 13; P=0.003 versus mice breathing air). The protective effects of inhaled NO on the outcome after CA/CPR were associated with reduced water diffusion abnormality, caspase-3 activation, and cytokine induction in the brain and increased serum nitrate/nitrite levels. Deficiency of the α1 subunit of soluble guanylate cyclase, a primary target of NO, abrogated the ability of inhaled NO to improve outcomes after CA/CPR. CONCLUSIONS: These results suggest that NO inhalation after CA and successful CPR improves outcome via soluble guanylate cyclase-dependent mechanisms.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco/terapia , Óxido Nítrico/administración & dosificación , Administración por Inhalación , Aire , Animales , Apoptosis , Presión Sanguínea , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/fisiopatología , Caspasa 3/metabolismo , Citocinas/antagonistas & inhibidores , Citocinas/biosíntesis , Difusión , Activación Enzimática/efectos de los fármacos , Guanilato Ciclasa/química , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Corazón/efectos de los fármacos , Corazón/fisiopatología , Paro Cardíaco/mortalidad , Paro Cardíaco/patología , Paro Cardíaco/fisiopatología , Mediadores de Inflamación/antagonistas & inhibidores , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistema Nervioso/fisiopatología , Nitratos/sangre , Nitritos/sangre , Respiración , Solubilidad , Tasa de Supervivencia , Factores de Tiempo , Función Ventricular Izquierda , Función Ventricular Derecha , Agua/metabolismo
8.
J Pharmacol Exp Ther ; 339(3): 832-41, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21873557

RESUMEN

Treatment with statins, inhibitors of HMG-CoA reductase, extends the survival of septic mice. However, the molecular mechanisms underlying the cholesterol-lowering, independent beneficial effects of statins in sepsis are poorly understood. The inhibition of protein isoprenylation, namely farnesylation and geranylgeranylation, has been proposed as a mediator of the pleiotropic protective effects of statins, although direct evidence is lacking. Major features of sepsis-induced immune suppression include T-cell dysfunction, which is characterized by apoptosis of splenic T cells, increased CD4(+)Foxp3(+) regulatory T cells (Tregs), and suppression of type 1 helper T-cell response [e.g., interferon-γ (IFN-γ) secretion] in mice. Here, we show that the induction of sepsis by cecal ligation and puncture (CLP) resulted in increases in farnesyltransferase activity and farnesylated proteins in the spleen relative to sham operation. Treatment with farnesyltransferase inhibitor N-[4-[2(R)-amino-3-mercaptopropyl]amino-2-phenylbenzoyl]methionine methyl ester trifluoroacetate salt (FTI-277) (25 mg/kg b.wt. i.p.) at 2 h after CLP blocked the increase in farnesylated proteins and improved survival and bacterial clearance of septic mice. FTI-277 reverted to or mitigated sepsis-induced apoptosis in spleen and thymus, increased splenic CD4(+)Foxp3(+) Tregs, and suppressed IFN-γ secretion and proliferation of splenocytes in response to anti-CD3+CD28 antibodies in mice. Moreover, FTI-277 promoted macrophage phagocytotic activity in septic mice. These results indicate that elevation in protein farnesylation plays a role in derangements in immune function and mortality of septic mice. These findings suggest that prevention of immune dysfunction might contribute to FTI-277-induced improvement in survival of septic mice. These data highlight protein farnesyltransferase as a novel potential molecular target to reduce the mortality of patients with sepsis.


Asunto(s)
Carga Bacteriana/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Farnesiltransferasa/antagonistas & inhibidores , Metionina/análogos & derivados , Sepsis/tratamiento farmacológico , Animales , Ciego/cirugía , Citocinas/análisis , Evaluación Preclínica de Medicamentos , Farnesiltransferasa/metabolismo , Proteína HMGB1/sangre , Pruebas de Función Cardíaca , Hemodinámica/efectos de los fármacos , Pulmón/efectos de los fármacos , Masculino , Metionina/farmacología , Ratones , Ratones Endogámicos C57BL , Prenilación de Proteína , Sepsis/inmunología , Sepsis/mortalidad , Bazo/efectos de los fármacos , Bazo/metabolismo , Linfocitos T/efectos de los fármacos
9.
Circulation ; 117(15): 1982-90, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18391111

RESUMEN

BACKGROUND: One of the major obstacles hindering the clinical development of a cell-free, hemoglobin-based oxygen carrier (HBOC) is systemic vasoconstriction. METHODS AND RESULTS: Experiments were performed in healthy mice and lambs by infusion of either murine tetrameric hemoglobin (0.48 g/kg) or glutaraldehyde-polymerized bovine hemoglobin (HBOC-201, 1.44 g/kg). We observed that intravenous infusion of either murine tetrameric hemoglobin or HBOC-201 induced prolonged systemic vasoconstriction in wild-type mice but not in mice congenitally deficient in endothelial nitric oxide (NO) synthase (NOS3). Treatment of wild-type mice by breathing NO at 80 ppm in air for 15 or 60 minutes or with 200 ppm NO for 7 minutes prevented the systemic hypertension induced by subsequent intravenous administration of murine tetrameric hemoglobin or HBOC-201 and did not result in conversion of plasma hemoglobin to methemoglobin. Intravenous administration of sodium nitrite (48 nmol) 5 minutes before infusion of murine tetrameric hemoglobin also prevented the development of systemic hypertension. In awake lambs, breathing NO at 80 ppm for 1 hour prevented the systemic hypertension caused by subsequent infusion of HBOC-201. CONCLUSIONS: These findings demonstrate that HBOC can cause systemic vasoconstriction by scavenging NO produced by NOS3. Moreover, in 2 species, inhaled NO administered before the intravenous infusion of HBOC can prevent systemic vasoconstriction without causing methemoglobinemia.


Asunto(s)
Sustitutos Sanguíneos/uso terapéutico , Hemoglobinas/uso terapéutico , Hipertensión/prevención & control , Óxido Nítrico/uso terapéutico , Vasoconstricción/efectos de los fármacos , Vasodilatadores/uso terapéutico , Administración por Inhalación , Animales , Sustitutos Sanguíneos/administración & dosificación , Sustitutos Sanguíneos/toxicidad , Transfusión Sanguínea , Evaluación Preclínica de Medicamentos , Hemodinámica/efectos de los fármacos , Hemoglobinas/administración & dosificación , Hemoglobinas/toxicidad , Hipertensión/inducido químicamente , Infusiones Intravenosas , Metahemoglobinemia/prevención & control , Ratones , Ratones Noqueados , Óxido Nítrico/administración & dosificación , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo III , Premedicación , Ovinos , Nitrito de Sodio/administración & dosificación , Nitrito de Sodio/uso terapéutico , Vasodilatadores/administración & dosificación , Vigilia
10.
Circulation ; 110(15): 2253-9, 2004 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-15466650

RESUMEN

BACKGROUND: Inhaled nitric oxide (NO) is a potent and selective pulmonary vasodilator, which induces cGMP synthesis by activating soluble guanylate cyclase (sGC) in ventilated lung regions. Carbon monoxide (CO) has also been proposed to influence smooth muscle tone via activation of sGC. We examined whether direct stimulation of sGC by BAY 41-2272 would produce pulmonary vasodilation and augment the pulmonary responses to inhaled NO or CO. METHODS AND RESULTS: In awake, instrumented lambs, the thromboxane analogue U-46619 was intravenously administered to increase mean pulmonary arterial pressure to 35 mm Hg. Intravenous infusion of BAY 41-2272 (0.03, 0.1, and 0.3 mg x kg(-1) x h(-1)) reduced mean pulmonary arterial pressure and pulmonary vascular resistance and increased transpulmonary cGMP release in a dose-dependent manner. Larger doses of BAY 41-2272 also produced systemic vasodilation and elevated the cardiac index. N(omega)-nitro-l-arginine methyl ester abolished the systemic but not the pulmonary vasodilator effects of BAY 41-2272. Furthermore, infusing BAY 41-2272 at 0.1 mg x kg(-1) x h(-1) potentiated and prolonged the pulmonary vasodilation induced by inhaled NO (2, 10, and 20 ppm). In contrast, inhaled CO (50, 250, and 500 ppm) had no effect on U-46619-induced pulmonary vasoconstriction before or during administration of BAY 41-2272. CONCLUSIONS: In lambs with acute pulmonary hypertension, BAY 41-2272 is a potent pulmonary vasodilator that augments and prolongs the pulmonary vasodilator response to inhaled NO. Direct pharmacological stimulation of sGC, either alone or in combination with inhaled NO, may provide a novel approach for the treatment of pulmonary hypertension.


Asunto(s)
Proteínas de Unión al Calcio/agonistas , Hipertensión Pulmonar/tratamiento farmacológico , Óxido Nítrico/uso terapéutico , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Resistencia Vascular/efectos de los fármacos , Vasodilatadores/uso terapéutico , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/toxicidad , Administración por Inhalación , Animales , Presión Sanguínea/efectos de los fármacos , Proteínas de Unión al Calcio/fisiología , Dióxido de Carbono/sangre , Monóxido de Carbono/farmacología , GMP Cíclico/biosíntesis , GMP Cíclico/metabolismo , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Proteínas Activadoras de la Guanilato-Ciclasa , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/fisiopatología , Infusiones Intravenosas , NG-Nitroarginina Metil Éster/administración & dosificación , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/administración & dosificación , Óxido Nítrico/farmacología , Oxígeno/sangre , Arteria Pulmonar , Pirazoles/administración & dosificación , Pirazoles/farmacología , Piridinas/administración & dosificación , Piridinas/farmacología , Ovinos , Vasodilatadores/administración & dosificación , Vasodilatadores/farmacología , Vigilia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA