Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Adv ; 8(33): eabq2640, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35977019

RESUMEN

People who are blind do not have access to graphical data and imagery produced by science. This exclusion complicates learning and data sharing between sighted and blind persons. Because blind people use tactile senses to visualize data (and sighted people use eyesight), a single data format that can be easily visualized by both is needed. Here, we report that graphical data can be three-dimensionally printed into tactile graphics that glow with video-like resolution via the lithophane effect. Lithophane forms of gel electropherograms, micrographs, electronic and mass spectra, and textbook illustrations could be interpreted by touch or eyesight at ≥79% accuracy (n = 360). The lithophane data format enables universal visualization of data by people regardless of their level of eyesight.

2.
Sci Adv ; 7(22)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34049883

RESUMEN

Handheld models help students visualize three-dimensional (3D) objects, especially students with blindness who use large 3D models to visualize imagery by hand. The mouth has finer tactile sensors than hand, which could improve visualization using microscopic models that are portable, inexpensive, and disposable. The mouth remains unused in tactile learning. Here, we created bite-size 3D models of protein molecules from "gummy bear" gelatin or nontoxic resin. Models were made as small as rice grain and could be coded with flavor and packaged like candy. Mouth, hands, and eyesight were tested at identifying specific structures. Students recognized structures by mouth at 85.59% accuracy, similar to recognition by eyesight using computer animation. Recall accuracy of structures was higher by mouth than hand for 40.91% of students, equal for 31.82%, and lower for 27.27%. The convenient use of entire packs of tiny, cheap, portable models can make 3D imagery more accessible to students.

3.
Front Endocrinol (Lausanne) ; 12: 615446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33927690

RESUMEN

Asperuloside is an iridoid glycoside found in many medicinal plants that has produced promising anti-obesity results in animal models. In previous studies, three months of asperuloside administration reduced food intake, body weight, and adipose masses in rats consuming a high fat diet (HFD). However, the mechanisms by which asperuloside exerts its anti-obesity properties were not clarified. Here, we investigated homeostatic and nutrient-sensing mechanisms regulating food intake in mice consuming HFD. We confirmed the anti-obesity properties of asperuloside and, importantly, we identified some mechanisms that could be responsible for its therapeutic effect. Asperuloside reduced body weight and food intake in mice consuming HFD by 10.5 and 12.8% respectively, with no effect on mice eating a standard chow diet. Fasting glucose and plasma insulin were also significantly reduced. Mechanistically, asperuloside significantly reduced hypothalamic mRNA ghrelin, leptin, and pro-opiomelanocortin in mice consuming HFD. The expression of fat lingual receptors (CD36, FFAR1-4), CB1R and sweet lingual receptors (TAS1R2-3) was increased almost 2-fold by the administration of asperuloside. Our findings suggest that asperuloside might exert its therapeutic effects by altering nutrient-sensing receptors in the oral cavity as well as hypothalamic receptors involved in food intake when mice are exposed to obesogenic diets. This signaling pathway is known to influence the subtle hypothalamic equilibrium between energy homeostasis and reward-induced overeating responses. The present pre-clinical study demonstrated that targeting the gustatory system through asperuloside administration could represent a promising and effective new anti-obesity strategy.


Asunto(s)
Fármacos Antiobesidad/farmacología , Peso Corporal/efectos de los fármacos , Monoterpenos Ciclopentánicos/farmacología , Glucósidos/farmacología , Piranos/farmacología , Percepción del Gusto/efectos de los fármacos , Aumento de Peso/efectos de los fármacos , Animales , Glucemia , Dieta Alta en Grasa , Ingestión de Energía/efectos de los fármacos , Ghrelina/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Insulina/sangre , Leptina/metabolismo , Masculino , Ratones , Proopiomelanocortina/metabolismo
4.
Enzyme Microb Technol ; 52(3): 141-50, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23410924

RESUMEN

Ionic liquids (ILs) have evolved as a new type of non-aqueous solvents for biocatalysis, mainly due to their unique and tunable physical properties. A number of recent review papers have described a variety of enzymatic reactions conducted in IL solutions, on the other hand, to improve the enzyme's activity and stability in ILs; major methods being explored include the enzyme immobilization (on solid support, sol-gel, etc.), protic ionic liquids used as an additive process. The immobilization of the lipase from Burkholderia cepacia by the sol-gel technique using protic ionic liquids (PIL) as additives to protect against inactivation of the lipase due to release of alcohol and shrinkage of the gel during the sol-gel process was investigated in this study. The influence of various factors such as the length of the alkyl chain of protic ionic liquids (monoethanolamine-based) and a concentration range between 0.5 and 3.0% (w/v) were evaluated. The resulting hydrophobic matrices and immobilized lipases were characterised with regard to specific surface area, adsorption-desorption isotherms, pore volume (V(p)) and size (d(p)) according to nitrogen adsorption and scanning electron microscopy (SEM), physico-chemical properties (thermogravimetric - TG, differential scanning calorimetry - DSC and Fourier transform infrared spectroscopy - FTIR) and the potential for ethyl ester and emulsifier production. The total activity yields (Y(a)) for matrices of immobilized lipase employing protic ionic liquids as additives always resulted in higher values compared with the sample absent the protic ionic liquids, which represents 35-fold increase in recovery of enzymatic activity using the more hydrophobic protic ionic liquids. Compared with arrays of the immobilized biocatalyst without additive, in general, the immobilized biocatalyst in the presence of protic ionic liquids showed increased values of surface area (143-245 m(2) g(-1)) and pore size (19-38 Å). Immobilization with protic ionic liquids also favoured reduced mass loss according to TG curves (always less than 42.9%) when compared to the immobilized matrix without protic ionic liquids (45.1%), except for the sample containing 3.0% protic ionic liquids (46.5%), verified by thermogravimetric analysis. Ionic liquids containing a more hydrophobic alkyl group in the cationic moiety were beneficial for recovery of the activity of the immobilized lipase. The physico-chemical characterization confirmed the presence of the enzyme and its immobilized derivatives obtained in this study by identifying the presence of amino groups, and profiling enthalpy changes of mass loss.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enzimas Inmovilizadas/metabolismo , Líquidos Iónicos/química , Lipasa/metabolismo , 2-Propanol/metabolismo , Proteínas Bacterianas/química , Burkholderia cepacia/enzimología , Rastreo Diferencial de Calorimetría , Emulsionantes/metabolismo , Enzimas Inmovilizadas/química , Esterificación , Geles , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Ácidos Láuricos/metabolismo , Lipasa/química , Microscopía Electrónica de Rastreo , Aceite de Oliva , Aceites de Plantas/metabolismo , Porosidad , Gel de Sílice , Aceite de Soja/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Termogravimetría
5.
Environ Toxicol Chem ; 30(12): 2802-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21935980

RESUMEN

A study of the ecotoxicity of different short aliphatic protic ionic liquids (PILs) on terrestrial organisms was conducted. Tests performed within the present study include those assessing the effects of PILs on soil microbial functions (carbon and nitrogen mineralization) and terrestrial plants. The results show that the nominal lowest-observed-adverse-effect concentration (LOAEC) values were 5,000 mg/kg (dry soil) for the plant test in two species (Lolium perenne, Allium cepa), 1,000 mg/kg (dry soil) for the plant test in one species (Raphanus sativus), and 10,000 mg/kg (dry soil) for carbon and nitrogen microbial transformation tests (all concentrations are nominal). Most of the median effective concentration values (EC50) were above 1,000 mg/kg (dry soil). Based on the obtained results, these compounds can be described as nontoxic for soil microbiota and the analyzed plants, and potentially biodegradable in soils, as can be deduced from the respirometric experiment. The toxicity rises with the increase of complexity of the PILs molecule (branch and length of aliphatic chain) among the three PILs analyzed.


Asunto(s)
Líquidos Iónicos/toxicidad , Plantas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Biodegradación Ambiental , Ecotoxicología , Monitoreo del Ambiente , Lolium/efectos de los fármacos , Lolium/crecimiento & desarrollo , Cebollas/efectos de los fármacos , Cebollas/crecimiento & desarrollo , Desarrollo de la Planta , Raphanus/efectos de los fármacos , Raphanus/crecimiento & desarrollo , Suelo/química , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA