Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cardiovasc Surg ; 5(6): 608-19, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9423947

RESUMEN

This study tests the hypothesis that abrupt reoxygenation of cyanotic immature hearts when starting cardiopulmonary bypass produces an unintended reoxygenation injury that: (i) nullifies the cardioprotective effects of blood cardioplegia; and (ii) is avoidable by adding the antioxidants, N-(2-mercaptopropionyl)-glycine (MPG) plus catalase to the cardiopulmonary bypass prime. Twenty immature piglets (aged 2-3 weeks) underwent 30 min of blood cardioplegic arrest (BCP) with standard clinical blood cardioplegia (hypocalcaemic, alkalotic, hyperosmolar, substrate-enriched). Six piglets remained normoxaemic (BCP). Fourteen others were made hypoxic (PO2 20-30 mmHg) for up to 2 h by lowering ventilator FiO2 (5-7%) before undergoing reoxygenation on cardiopulmonary bypass at PO2 400 mmHg. In eight animals, the pump prime was not supplemented with antioxidants (Reox + BCP), whereas MPG (80 mg/kg) and catalase (CAT; 5 mg/kg) were added to the pump prime in the other six (MPG/CAT). Myocardial function (end-systolic elastance, conductance catheter), oxidant damage (myocardial conjugated diene production), oxygen consumption and antioxidant reserve capacity were evaluated. Blood cardioplegic arrest caused no functional or biochemical changes in controls without preceding hypoxia. In contrast, hypoxia and reoxygenation in animals undergoing the same blood cardioplegic protocol (Reox + BCP) caused profound myocardial dysfunction, as end-systolic elastance recovered only to 21(2)% (P < 0.05 versus control) of baseline values. Additionally, it reduced antioxidant reserve capacity (malondialdehyde, MDA at 4.0 mM of t-BHP: 1342(59) (P < 0.05 versus control) versus 788(53) mmol/g protein), and led to significantly greater production of conjugated dienes during warm induction (42(4.4) (P < 0.05 versus control) versus 3.3(1.4) A233 nm/100 g per min) and reperfusion (22(2.7) (P < 0.005 versus control) versus 2(0.6) A233 nm/100 g per min). Conversely, supplementation of MPG plus catalase to the pump prime reduced lipid peroxidation (conjugated diene production during warm induction: 22.3(7) A233 nm/100 g per min P < 0.05 versus Reox + BCP), restored antioxidant reserve capacity (MDA at 4.0 M of t-BHP: 975(139) mmol/g protein P < 0.05 versus Reox + BCP) and allowed almost complete functional recovery (80(8)%). Abrupt reoxygenation of hypoxaemic immature hearts on cardiopulmonary bypass causes oxidant damage, nullifies the cardioprotective effects of blood cardioplegia, and leads to reduced myocardial contractility. Antioxidant supplementation of the cardiopulmonary bypass prime avoids these detrimental effects, and results in improved biochemical and functional status.


Asunto(s)
Antioxidantes/farmacología , Soluciones Cardiopléjicas , Puente Cardiopulmonar , Catalasa/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Tiopronina/farmacología , Animales , Animales Recién Nacidos , Hemodinámica , Peroxidación de Lípido , Contracción Miocárdica , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Consumo de Oxígeno , Periodo Posoperatorio , Porcinos , Función Ventricular Izquierda
2.
Jpn Circ J ; 60(6): 355-63, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8844302

RESUMEN

Cardiopulmonary bypass (CPB) per se alters many factors simultaneously, including free radical generation, which suggests that conventional hyperoxic CPB may produce oxidative injury in the infantile heart and lung. This study tests the hypothesis that CPB provokes oxidative cardiopulmonary changes and pulmonary endothelial dysfunction in immature piglets that can be prevented by free radical scavengers. We studied 15 2- to 3-week-old piglets. Five served as a control without CPB. Ten piglets underwent 60 min of CPB with a membrane oxygenator (Sarns). In 5 of these 10, the bypass prime was supplemented with N-mercaptopropionylglycine (MPG: 80 mg/kg) plus catalase (50,000 U/kg), whereas the others were not treated. Pre- and post-bypass cardiopulmonary function was measured in terms of left ventricular end-systolic elastance [Ees] by a conductance catheter, the arterial/alveolar pO2 ratio (a/A ratio) and static lung compliance. Conjugated dienes (A233 nm/mg lipid) were measured to detect lipid peroxidation in heart and lung tissue, and myocardial antioxidant reserve capacity [malondialdehyde (MDA) production in cardiac tissue incubated with the oxidant t-butyl hydroperoxide (t-BHP)] was assessed to detect oxidative changes. Pulmonary vascular resistance (PVR) and transpulmonary nitric oxide (NO) production were measured to assess pulmonary endothelial injury. Myocardial antioxidant reserve capacity was significantly reduced after 60 min of CPB, compared to control animals (MDA 779 +/- 100 vs 470 +/- 30 nmol/g protein, p < 0.05 at t-BHP 2.0 mmol/L), without evidence of lipid peroxidation or myocardial dysfunction. Pulmonary vascular resistance after CPB was dramatically increased (83 +/- 12 to 212 +/- 30, p < 0.05) without any change in lung function. In parallel to pulmonary vasoconstriction, NO production was significantly decreased after CPB (from 8.8 +/- 1.4 to 2.5 +/- 0.5 mmol/min/kg, p < 0.05). The addition of antioxidants (MPG+catalase) to the prime significantly improved myocardial antioxidant status (MDA: 604 +/- 30 vs 779 +/- 100 nmol/g protein, p < 0.05) and pulmonary vascular resistance (114 +/- 29 vs 212 +/- 30, p < 0.05 vs no-treatment group). In conclusion, the present study confirms that 1) Cardiopulmonary bypass produces substantial oxidative stress in normal immature myocardium, as assessed by reduced antioxidant reserve capacity; 2) CPB impairs pulmonary endothelial function, characterized by NO production, resulting in pulmonary vasoconstriction; and 3) These deleterious effects can be prevented by the addition of antioxidants (MPG/catalase) to the pump prime.


Asunto(s)
Antioxidantes/administración & dosificación , Puente Cardiopulmonar/efectos adversos , Estrés Oxidativo , Animales , Catalasa/administración & dosificación , Radicales Libres , Humanos , Porcinos , Tiopronina/administración & dosificación
3.
Ann Thorac Surg ; 61(6): 1775-80, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8651783

RESUMEN

BACKGROUND: Pulmonary hypertension is a serious complication after cardiopulmonary bypass (CPB). This study tests the hypothesis that CPB provokes oxidant-mediated pulmonary endothelial dysfunction, leading to reduced nitric oxide (NO) production and pulmonary vasoconstriction. METHODS: Twelve piglets underwent 2 hours of CPB. In 6 of them, CPB prime was supplemented with N-mercaptopropionylglycine and catalase, whereas the others were not treated. Left and right ventricular function were evaluated from end-systolic elastance and Starling analysis. Pulmonary vascular resistance and transpulmonary NO production (measuring NO2-, NO3-) were determined to assess pulmonary endothelial function. RESULTS: Cardiopulmonary bypass caused a significant increase in pulmonary vascular resistance (83 +/- 12 to 212 +/- 30 dynes.cm-5.s kg-1, p < 0.05), associated with a reduction of NO production (8.8 +/- 1.4 to 2.5 +/- 0.5 mumol/min, p < 0.05) and depressed right ventricular function (56 +/- 12% of control), whereas N-mercaptopropionylglycine and catalase added to the CPB allowed a substantial improvement of these deleterious effects of CPB. CONCLUSIONS: Cardiopulmonary bypass impairs pulmonary NO production, resulting in pulmonary vasoconstriction and right ventricular dysfunction, which can be reduced by antioxidants. These findings imply the validity of NO inhalation therapy for postoperative pulmonary hypertension as a supplementation of endogenous endothelium-derived relaxing factor.


Asunto(s)
Puente Cardiopulmonar , Óxido Nítrico/biosíntesis , Arteria Pulmonar/fisiopatología , Vasoconstricción , Animales , Antioxidantes/farmacología , Puente Cardiopulmonar/efectos adversos , Catalasa/farmacología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Hipertensión Pulmonar/etiología , Nitratos/sangre , Óxido Nítrico/sangre , Nitritos/sangre , Oxidantes/metabolismo , Arteria Pulmonar/metabolismo , Porcinos , Tiopronina/farmacología , Resistencia Vascular/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Disfunción Ventricular Derecha/etiología , Función Ventricular Izquierda/efectos de los fármacos , Función Ventricular Derecha/efectos de los fármacos
4.
J Thorac Cardiovasc Surg ; 110(4 Pt 2): 1228-34, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7475174

RESUMEN

Previous studies show that (1) hypoxemia depletes immature myocardium of amino acid substrates and their replenishment improves ischemic tolerance, (2) reoxygenation on cardiopulmonary bypass causes oxygen-mediated damage without added ischemia, and (3) this damage may be related to the nitric oxide-L-arginine pathway that is affected by amino acid metabolism. This study tests the hypothesis that priming the cardiopulmonary bypass circuit with glutamate and aspartate limits reoxygenation damage. Of 22 immature Duroc-Yorkshire piglets (< 3 weeks old), five were observed over a 5-hour period (control), and five others underwent 30 minutes of CPB without hypoxemia (cardiopulmonary bypass control). Twelve others became hypoxemic by reducing ventilator inspired oxygen fraction to 6% to 7% (oxygen tension about 25 mm Hg) before reoxygenation on cardiopulmonary bypass for 30 minutes. Of these five were untreated (no treatment), and the cardiopulmonary bypass circuit was primed with 5 mmol/L glutamate and aspartate in seven others (treatment). Left ventricular function before and after bypass was measured by inscribing pressure-volume loops (end-systolic elastance). Myocardial conjugated diene levels were measured to detect lipid peroxidation, and antioxidant reserve capacity was tested by incubating cardiac muscle with the oxidant t-butylhydroperoxide to determine the susceptibility to subsequent oxidant injury. CPB (no hypoxemia) allowed complete functional recovery without changing conjugated dienes and antioxidant reserve capacity, whereas reoxygenation injury developed in untreated hearts. This was characterized by reduced contractility (elastance end-systolic recovered only 37% +/- 8%*), increased conjugated diene levels (1.3 +/- 0.1 vs 0.7 +/- 0.1*), and decreased antioxidant reserve capacity (910 +/- 59 vs 471 +/- 30 malondialdehyde nmol/g protein at 2 mmol/L t-butylhydroperoxide*). In contrast, priming the cardiopulmonary bypass circuit with glutamate and aspartate resulted in significantly better left ventricular functional recovery (75% +/- 8% vs 37% +/- 8%*), minimal conjugated diene production (0.8 +/- 0.1 vs 1.3 +/- 0.1*), and improved antioxidant reserve capacity (726 +/- 27 vs 910 +/- 59 malondialdehyde nmol/g protein*) (*p < 0.05 vs cardiopulmonary bypass control). We conclude that reoxygenation of immature hypoxemic piglets by the initiation of cardiopulmonary bypass causes myocardial dysfunction, lipid peroxidation, and reduced tolerance to oxidant stress, which may increase vulnerability to subsequent ischemia (i.e., aortic crossclamping). These data suggest that supplementing the prime of cardiopulmonary bypass circuit with glutamate and aspartate may reduce these deleterious consequences of reoxygenation.


Asunto(s)
Ácido Aspártico/uso terapéutico , Puente Cardiopulmonar/efectos adversos , Ácido Glutámico/uso terapéutico , Hipoxia/complicaciones , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Alcadienos/metabolismo , Animales , Puente Cardiopulmonar/métodos , Hemodinámica/efectos de los fármacos , Hipoxia/etiología , Hipoxia/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/fisiopatología , Porcinos , Función Ventricular Izquierda/efectos de los fármacos
5.
J Thorac Cardiovasc Surg ; 110(4 Pt 2): 1245-54, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7475176

RESUMEN

This study tests the hypothesis that reoxygenation of cyanotic immature hearts when starting cardiopulmonary bypass produces an "unintended" reoxygenation injury that (1) nullifies the cardioprotective effects of blood cardioplegia and (2) is avoidable by adding antioxidants N-(2-mercaptopropionyl)-glycine plus catalase to the cardiopulmonary bypass prime. Twenty immature piglets (2 to 3 weeks) underwent 30 minutes of aortic clamping with a blood cardioplegic solution that was hypocalcemic, alkalotic, hyperosmolar, and enriched with glutamate and aspartate during 1 hour of cardiopulmonary bypass. Of these, six piglets did not undergo hypoxemia (blood cardioplegic control) and 14 others remained hypoxemic (oxygen tension about 25 mm Hg) for up to 2 hours by lowering ventilator fraction of inspired oxygen before reoxygenation on cardiopulmonary bypass. The primary solution of the cardiopulmonary bypass circuit was unchanged in eight piglets (no treatment) and supplemented with the antioxidants N-(2-mercaptopropionyl)-glycine (80 mg/kg) and catalase (5 mg/kg) in six others (N-(2-mercaptopropionyl)-glycine and catalase). Myocardial function (end-systolic elastance), lipid peroxidation (myocardial conjugated diene production), and antioxidant reserve capacity were evaluated. Blood cardioplegic arrest produced no biochemical or functional changes in nonhypoxemic control piglets. Reoxygenation caused an approximate 10-fold increase in conjugated production that persisted throughout cardiopulmonary bypass, lowered antioxidant reserve capacity 86% +/- 12%, and produced profound myocardial dysfunction, because end-systolic elastance recovered only 21% +/- 2%. Supplementation of the cardiopulmonary bypass prime with N-(2-mercaptopropionyl)-glycine and catalase reduced lipid peroxidation, restored antioxidant reserve capacity, and allowed near complete functional recovery (80% +/- 8%).** Lipid peroxidation (conjugated diene) production was lower during warm blood cardioplegic reperfusion than during induction in all reoxygenated hearts, which suggests that blood cardioplegia did not injure reoxygenated myocardium. We conclude that reoxygenation of the hypoxemic immature heart causes cardiac functional and antioxidant damage that nullifies the cardioprotective effects of blood cardioplegia that can be avoided by supplementation of the cardiopulmonary bypass prime with antioxidants (*p < 0.05 vs blood cardioplegic control; **p < 0.05 vs reoxygenation).


Asunto(s)
Aorta/cirugía , Puente Cardiopulmonar/efectos adversos , Catalasa/uso terapéutico , Paro Cardíaco Inducido , Hipoxia/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Tiopronina/uso terapéutico , Alcadienos/metabolismo , Animales , Puente Cardiopulmonar/métodos , Constricción , Hipoxia/complicaciones , Hipoxia/etiología , Hipoxia/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Daño por Reperfusión Miocárdica/etiología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA