Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Physiol Sci ; 74(1): 14, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431563

RESUMEN

Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker. The SCN resets peripheral clocks through sympathetic nerves or adrenal glucocorticoids (GCs). IOP's circadian rhythm is governed by circadian time signals, sympathetic noradrenaline (NE), and GCs, rather than the local clock. The activity of Na+/K+-ATPase in non-pigmented epithelial cells in the ciliary body can influence the nocturnal increase in IOP by enhancing AH inflow. Conversely, NE, not GCs, can regulate the IOP rhythm by suppressing TM macrophage phagocytosis and AH outflow. The activation of the ß1-adrenergic receptor (AR)-mediated EPAC-SHIP1 signal through the ablation of phosphatidylinositol triphosphate may govern phagocytic cup formation. These findings could offer insights for better glaucoma management, such as chronotherapy.


Asunto(s)
Glaucoma , Presión Intraocular , Humanos , Malla Trabecular , Humor Acuoso/fisiología , Ritmo Circadiano/fisiología , Glucocorticoides
2.
J Clin Pharmacol ; 62(9): 1151-1159, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35383950

RESUMEN

Denosumab-induced hypocalcemia is sometimes severe, and although a natural vitamin D/calcium combination is used to prevent hypocalcemia, some patients rapidly develop severe hypocalcemia even under supplementation. It is clinically important to predict this risk. This study aimed to develop a risk prediction model for grade ≥2 hypocalcemia within 28 days after the first denosumab dose under natural vitamin D/calcium supplementation. Using a large database containing multicenter practice data, 2399 patients with bone metastasis who were treated with denosumab between June 2013 and May 2020 were retrospectively analyzed. Background factors in patients who developed grade ≥2 hypocalcemia within 28 days after the first denosumab dose and those who did not were compared by univariate analysis. Multivariate analysis was conducted to develop a risk prediction model. The model was evaluated for discriminant performance (receiver operating characteristic-area under the curve, sensitivity, specificity) and predictive performance (calibration slope). A total of 124 patients in the hypocalcemia group and 1191 patients in the nonhypocalcemia group were extracted. A risk prediction model consisting of sex, calcium, albumin, alkaline phosphatase, osteoporosis, breast cancer, gastric cancer, proton pump inhibitor combination, and pretreatment with zoledronic acid was developed. The receiver operating characteristic-area under the curve was 0.87. Sensitivity and specificity were 83% and 81%, respectively, and the calibration slope indicated acceptable agreement between observed and predicted risk. This model appears to be useful to predict the risk of denosumab-induced hypocalcemia and thus should be helpful for risk management of denosumab treatment in patients with bone metastases.


Asunto(s)
Conservadores de la Densidad Ósea , Neoplasias Óseas , Colecalciferol , Denosumab , Hipocalcemia , Conservadores de la Densidad Ósea/efectos adversos , Neoplasias Óseas/tratamiento farmacológico , Calcio/uso terapéutico , Colecalciferol/efectos adversos , Colecalciferol/uso terapéutico , Denosumab/efectos adversos , Denosumab/uso terapéutico , Humanos , Hipocalcemia/inducido químicamente , Hipocalcemia/tratamiento farmacológico , Hipocalcemia/prevención & control , Estudios Retrospectivos , Vitamina D/uso terapéutico
3.
Invest Ophthalmol Vis Sci ; 61(3): 26, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182332

RESUMEN

Purpose: Elevated IOP can cause the development of glaucoma. The circadian rhythm of IOP depends on the dynamics of the aqueous humor and is synchronized with the circadian rhythm pacemaker, that is, the suprachiasmatic nucleus. The suprachiasmatic nucleus resets peripheral clocks via sympathetic nerves or adrenal glucocorticoids. However, the detailed mechanisms underlying IOP rhythmicity remain unclear. The purpose of this study was to verify this regulatory pathway. Methods: Adrenalectomy and/or superior cervical ganglionectomy were performed in C57BL/6J mice. Their IOP rhythms were measured under light/dark cycle and constant dark conditions. Ocular administration of corticosterone or norepinephrine was also performed. Localization of adrenergic receptors, glucocorticoid receptors, and clock proteins Bmal1 and Per1 were analyzed using immunohistochemistry. Period2::luciferase rhythms in the cultured iris/ciliary bodies of adrenalectomized and/or superior cervical ganglionectomized mice were monitored to evaluate the effect of the procedures on the local clock. The IOP rhythm of retina and ciliary epithelium-specific Bmal1 knockout mice were measured to determine the significance of the local clock. Results: Adrenalectomy and superior cervical ganglionectomy disrupted IOP rhythms and the circadian clock in the iris/ciliary body cultures. Instillation of corticosterone and norepinephrine restored the IOP rhythm. ß2-Adrenergic receptors, glucocorticoid receptors, and clock proteins were strongly expressed within the nonpigmented epithelia of the ciliary body. However, tissue-specific Bmal1 knock-out mice maintained their IOP rhythm. Conclusions: These findings suggest direct driving of the IOP rhythm by the suprachiasmatic nucleus, via the dual corticosterone and norepinephrine pathway, but not the ciliary clock, which may be useful for chronotherapy of glaucoma.


Asunto(s)
Ritmo Circadiano/fisiología , Corticosterona/farmacología , Presión Intraocular/fisiología , Norepinefrina/farmacología , Sistema Nervioso Simpático/fisiología , Factores de Transcripción ARNTL/metabolismo , Administración Oftálmica , Adrenalectomía , Animales , Células Cultivadas , Cuerpo Ciliar/efectos de los fármacos , Cuerpo Ciliar/metabolismo , Ritmo Circadiano/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Ganglionectomía , Inmunohistoquímica , Iris/efectos de los fármacos , Iris/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Circadianas Period/metabolismo , Fotoperiodo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Glucocorticoides/metabolismo , Ganglio Cervical Superior/cirugía , Tonometría Ocular
4.
EMBO Mol Med ; 10(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29666146

RESUMEN

Chronic circadian disruption due to shift work or frequent travel across time zones leads to jet-lag and an increased risk of diabetes, cardiovascular disease, and cancer. The development of new pharmaceuticals to treat circadian disorders, however, is costly and hugely time-consuming. We therefore performed a high-throughput chemical screen of existing drugs for circadian clock modulators in human U2OS cells, with the aim of repurposing known bioactive compounds. Approximately 5% of the drugs screened altered circadian period, including the period-shortening compound dehydroepiandrosterone (DHEA; also known as prasterone). DHEA is one of the most abundant circulating steroid hormones in humans and is available as a dietary supplement in the USA Dietary administration of DHEA to mice shortened free-running circadian period and accelerated re-entrainment to advanced light-dark (LD) cycles, thereby reducing jet-lag. Our drug screen also revealed the involvement of tyrosine kinases, ABL1 and ABL2, and the BCR serine/threonine kinase in regulating circadian period. Thus, drug repurposing is a useful approach to identify new circadian clock modulators and potential therapies for circadian disorders.


Asunto(s)
Relojes Circadianos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Reposicionamiento de Medicamentos/métodos , Preparaciones Farmacéuticas/administración & dosificación , Animales , Línea Celular Tumoral , Células Cultivadas , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo
5.
Gen Comp Endocrinol ; 227: 64-8, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26050562

RESUMEN

Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms.


Asunto(s)
Fotoperiodo , Reproducción/fisiología , Estaciones del Año , Tirotropina/metabolismo , Vertebrados/fisiología , Animales , Ritmo Circadiano/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Hipófisis/metabolismo , Transducción de Señal/fisiología , Hormonas Tiroideas/metabolismo
6.
J Comp Neurol ; 517(3): 397-404, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19760601

RESUMEN

The circadian clock is a fundamental property of living organisms and is involved in seasonal (photoperiodic) time measurement. Among vertebrates, birds have multiple circadian pacemakers in the eye, the pineal gland, and the suprachiasmatic nucleus (SCN), and have highly sophisticated photoperiodic mechanisms. However, because the removal of these circadian pacemakers fails to abolish the photoperiodic response, the existence of another "photoperiodic clock" has been suggested. Recent studies have revealed that the mediobasal hypothalamus (MBH) and the adjacent pars tuberalis (PT) of the pituitary gland constitute key components of the photoperiodic signal transduction machinery. In the present study, we generated a polyclonal antibody against the chicken circadian clock protein BMAL1 to examine BMAL1 distribution in the Japanese quail brain by using immunohistochemistry. BMAL1-like immunoreactivity (lir) was confirmed in the pineal gland and the medial SCN, which are critical circadian pacemakers. We also observed strong immunoreactivity in the MBH, including the ependymal cells (ECs), the infundibular nucleus (IN), the median eminence (ME), and the adjacent PT. Furthermore, semiquantitative analysis suggested that BMAL1-lir shows daily fluctuation in these regions. It is possible that circadian clocks in the photoperiodic signal transduction machinery such as the PT and the EC may be involved in the regulation of photoperiodism.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteínas Aviares/metabolismo , Encéfalo/metabolismo , Pollos/metabolismo , Coturnix/metabolismo , Fotoperiodo , Factores de Transcripción ARNTL/inmunología , Animales , Anticuerpos/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Proteínas Aviares/inmunología , Hipotálamo/metabolismo , Masculino , Eminencia Media/metabolismo , Periodicidad , Glándula Pineal/metabolismo , Especificidad de la Especie , Núcleo Supraquiasmático/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA