Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 412(17): 4037-4043, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32328689

RESUMEN

A convenient analytical system for protein-ligand interactions under crude conditions was developed using native mass spectrometry (MS). As a model protein, Escherichia coli (E. coli) dihydrofolate reductase (DHFR) with and without a histidine tag was used for the study. First, overexpressed DHFR with a His-tag was roughly purified with a Ni-sepharose resin and subjected to native mass spectrometry with or without incubation with an inhibitor, Methotrexate (MTX). Even only with the minimum cleanup by the Ni-sepharose resin, intact ions of DHFR-nicotinamide adenine dinucleotide phosphate (NADPH) and DHFR-NADPH-ligand complexes were successfully observed. By optimizing the preparation procedures of the crude sample for native MS, e.g., avoiding sonication for cell lysis, we successfully observed intact ions of the specific DHFR-NADPH-MTX ternary complex starting with cultivation of E. coli in ≤ 25 mL medium. When the crude DHFR sample was mixed with two, four, or eight candidate compounds, only ions of the specific protein-ligand complex were observed. This indicates that the present system can be used as a rapid and convenient method for the rough determination of binding of specific ligands to the target protein without the time-consuming purification of protein samples. Moreover, it is important to rapidly determine specific interactions with target proteins under conditions similar to those in "real" biological systems. Graphical abstract.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Antagonistas del Ácido Fólico/farmacología , Metotrexato/farmacología , Tetrahidrofolato Deshidrogenasa/metabolismo , Sitios de Unión , Evaluación Preclínica de Medicamentos/métodos , Escherichia coli/química , Proteínas de Escherichia coli/química , NADP/química , NADP/metabolismo , Unión Proteica , Espectrometría de Masa por Ionización de Electrospray/métodos , Tetrahidrofolato Deshidrogenasa/química
2.
Biochemistry ; 54(39): 6052-61, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26348494

RESUMEN

In chloroplasts, ferredoxin (Fd) is reduced by Photosystem I (PSI) and oxidized by Fd-NADP(+) reductase (FNR) that is involved in NADP(+) reduction. To understand the structural basis for the dynamics and efficiency of the electron transfer reaction via Fd, we complementary used X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. In the NMR analysis of the formed electron transfer complex with Fd, the paramagnetic effect of the [2Fe-2S] cluster of Fd prevented us from detecting the NMR signals around the cluster. To solve this problem, the paramagnetic iron-sulfur cluster was replaced with a diamagnetic metal cluster. We determined the crystal structure of the Ga-substituted Fd (GaFd) from Synechocystis sp. PCC6803 at 1.62 Šresolution and verified its functional complementation using affinity chromatography. NMR analysis of the interaction sites on GaFd with PSI (molecular mass of ∼1 MDa) and FNR from Thermosynechococcus elongatus was achieved with high-field NMR spectroscopy. With reference to the interaction sites with FNR of Anabaena sp. PCC 7119 from the published crystal data, the interaction sites of Fd with FNR and PSI in solution can be classified into two types: (1) the core hydrophobic residues in the proximity of the metal center and (2) the hydrophilic residues surrounding the core. The former sites are shared in the Fd:FNR and Fd:PSI complex, while the latter ones are target-specific and not conserved on the residual level.


Asunto(s)
Anabaena/química , Ferredoxinas/química , Synechocystis/química , Dominio Catalítico , Cristalografía por Rayos X , Resonancia Magnética Nuclear Biomolecular
3.
J Biochem ; 140(3): 453-6, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16916843

RESUMEN

For high-throughput protein structural analyses, it is essential to develop a reliable protein overexpression system. Although many protein overexpression systems, such as ones involving Escherichia coli cells, have been developed, the number of overexpressed proteins exhibiting the same biological activities as those of the native ones is limited. A novel wheat germ cell-free protein synthesis system was developed recently, and most of the synthesized proteins that should function in solution were found to be in soluble forms. This suggests the applicability of this protein synthesis method to determination of the functional structures of soluble proteins. In our previous work, we developed a selective labeling technique for amino acids having amide functional groups (other than proline residues) involving the use of several inhibitors for transaminases. This paper in turn describes a proline-selective labeling technique. Based on our results, we have succeeded in constructing a complete amino acid selective labeling technique for the wheat germ cell-free protein synthesis system.


Asunto(s)
Proteínas de Plantas/biosíntesis , Prolina/química , Proteómica/métodos , ARN Mensajero/metabolismo , Triticum/química , Sistema Libre de Células , Resonancia Magnética Nuclear Biomolecular , Extractos Vegetales/metabolismo , Proteínas de Plantas/química , Triticum/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA