RESUMEN
Serotonergic neurons originating from the raphe nuclei have been proposed to regulate corticotropin-releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVH). Since glutamate- and γ-aminobutyric acid (GABA)-containing neurons, constituting the hypothalamic local circuits, innervate PVH CRF neurons, we examined whether they mediate the actions of serotonin (5-hydroxytryptamine [5-HT]) on CRF neurons. Spontaneous excitatory postsynaptic currents (sEPSCs) or spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in PVH CRF neurons, under whole cell patch-clamp, using the CRF-modified yellow fluorescent protein (Venus) ΔNeo mouse. Serotonin elicited an increase in the frequency of sEPSCs in 77% of the cells and a decrease in the frequency of sIPSCs in 71% of the cells, tested in normal medium. Neither the amplitude nor decay time of sEPSC and sIPSC was affected, thus the site(s) of action of serotonin may be presynaptic. In the presence of tetrodotoxin (TTX), serotonin had no significant effects on either parameter of sEPSC or sIPSC, indicating that the effects of serotonin are action potential-dependent, and that the presynaptic interneurons are largely intact within the slice; distant neurons may exist, though, since some 20%-30% of neurons did not respond to serotonin without TTX. We next examined through what receptor subtype(s) serotonin exerts its effects on presynaptic interneurons. DOI (5-HT2A/2C agonist) mimicked the action of serotonin on the sIPSCs, and the serotonin-induced decrease in sIPSC frequency was inhibited by a selective 5-HT2C antagonist RS102221. 8-OH-DPAT (5-HT1A/7 agonist) mimicked the action of serotonin on the sEPSCs, and the serotonin-induced increase in sEPSC frequency was inhibited by a selective 5-HT7 antagonist SB269970. Thus, serotonin showed a dual action on PVH CRF neurons, by upregulating glutamatergic- and downregulating GABAergic interneurons; the former may partly be mediated by 5-HT7 receptors, whereas the latter by 5-HT2C receptors. The CRF-Venus ΔNeo mouse was useful for the electrophysiological examination.
Asunto(s)
Hormona Liberadora de Corticotropina , Serotonina , Ratones , Animales , Serotonina/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Transmisión Sináptica/fisiología , Neuronas/metabolismo , Hipotálamo/metabolismoRESUMEN
CONTEXT: Serotonin transporters (5-HTT) are regarded as one of the major therapeutic targets of antidepressants. However, there have only been a few studies about 5-HTT occupancy, and in particular, data concerning classical antidepressants are still limited. OBJECTIVE: To investigate the relationship between 5-HTT occupancy and a wide range of antidepressant dosing protocols. DESIGN, SETTING, AND PARTICIPANTS: Antidepressant occupancies of 5-HTT were measured using positron emission tomography (PET) with [11C](+)McN5652. Twenty-seven healthy volunteers were measured with and without pretreatment with single low doses of antidepressants, and long-term doses were evaluated in 10 patients. Scan data were collected between December 12, 1995, and August 7, 2002, and data were analyzed during the 2001-2002 period at the National Institute of Radiological Sciences (Chiba, Japan). Intervention Four different doses of clomipramine hydrochloride (5-50 mg) and 3 different doses of fluvoxamine maleate (12.5-50 mg) were used for single administration. Long-term doses were 20 to 250 mg per day for clomipramine hydrochloride, and 25 to 200 mg per day for fluvoxamine maleate. Main Outcome Measure Occupancies in the thalamus were calculated using the individual baseline of [11C](+)McN5652 for single-dose studies and 2 long-term-dose studies, and the mean value of healthy volunteers as the baseline for 8 long-term-dose studies. The average data from inactive enantiomers [11C](-)McN5652 were used for the estimation of nonspecific binding. RESULTS: Occupancy of 5-HTT increased in a curvilinear manner. Even 10 mg of clomipramine hydrochloride showed approximately 80% occupancy, which was comparable with that of 50 mg of fluvoxamine maleate. Estimated median effective dose (ED50) of clomipramine hydrochloride was 2.67 mg for oral dose and 1.42 ng/mL for plasma concentration; those of fluvoxamine maleate were 18.6 mg and 4.19 ng/mL, respectively. CONCLUSIONS: Clinical doses of clomipramine and fluvoxamine occupied approximately 80% of 5-HTT, and dose escalation would have minimal effect on 5-HTT blockade. Ten milligrams of clomipramine hydrochloride was enough to occupy 80% of 5-HTT in vivo.