Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sports Med ; 42(8): 707-24, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22765281

RESUMEN

OBJECTIVES: Two distinct types of specific respiratory muscle training (RMT), i.e. respiratory muscle strength (resistive/threshold) and endurance (hyperpnoea) training, have been established to improve the endurance performance of healthy individuals. We performed a systematic review and meta-analysis in order to determine the factors that affect the change in endurance performance after RMT in healthy subjects. DATA SOURCES: A computerized search was performed without language restriction in MEDLINE, EMBASE and CINAHL and references of original studies and reviews were searched for further relevant studies. REVIEW METHODS: RMT studies with healthy individuals assessing changes in endurance exercise performance by maximal tests (constant load, time trial, intermittent incremental, conventional [non-intermittent] incremental) were screened and abstracted by two independent investigators. A multiple linear regression model was used to identify effects of subjects' fitness, type of RMT (inspiratory or combined inspiratory/expiratory muscle strength training, respiratory muscle endurance training), type of exercise test, test duration and type of sport (rowing, running, swimming, cycling) on changes in performance after RMT. In addition, a meta-analysis was performed to determine the effect of RMT on endurance performance in those studies providing the necessary data. RESULTS: The multiple linear regression analysis including 46 original studies revealed that less fit subjects benefit more from RMT than highly trained athletes (6.0% per 10 mL · kg⁻¹ · min⁻¹ decrease in maximal oxygen uptake, 95% confidence interval [CI] 1.8, 10.2%; p = 0.005) and that improvements do not differ significantly between inspiratory muscle strength and respiratory muscle endurance training (p = 0.208), while combined inspiratory and expiratory muscle strength training seems to be superior in improving performance, although based on only 6 studies (+12.8% compared with inspiratory muscle strength training, 95% CI 3.6, 22.0%; p = 0.006). Furthermore, constant load tests (+16%, 95% CI 10.2, 22.9%) and intermittent incremental tests (+18.5%, 95% CI 10.8, 26.3%) detect changes in endurance performance better than conventional incremental tests (both p < 0.001) with no difference between time trials and conventional incremental tests (p = 0.286). With increasing test duration, improvements in performance are greater (+0.4% per minute test duration, 95% CI 0.1, 0.6%; p = 0.011) and the type of sport does not influence the magnitude of improvements (all p > 0.05). The meta-analysis, performed on eight controlled trials revealed a significant improvement in performance after RMT, which was detected by constant load tests, time trials and intermittent incremental tests, but not by conventional incremental tests. CONCLUSION: RMT improves endurance exercise performance in healthy individuals with greater improvements in less fit individuals and in sports of longer durations. The two most common types of RMT (inspiratory muscle strength and respiratory muscle endurance training) do not differ significantly in their effect, while combined inspiratory/expiratory strength training might be superior. Improvements are similar between different types of sports. Changes in performance can be detected by constant load tests, time trials and intermittent incremental tests only. Thus, all types of RMT can be used to improve exercise performance in healthy subjects but care must be taken regarding the test used to investigate the improvements.


Asunto(s)
Rendimiento Atlético/fisiología , Ejercicios Respiratorios , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología , Músculos Respiratorios/fisiología , Bases de Datos Bibliográficas , Humanos , Modelos Lineales , Fuerza Muscular/fisiología
2.
Respir Physiol Neurobiol ; 175(1): 130-9, 2011 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-20937414

RESUMEN

We assessed the effect of inspiratory loaded breathing (ILB) on respiratory muscle strength and investigated the extent to which respiratory muscle fatigue is associated with chest wall volume changes during ILB. Twelve healthy subjects performed ILB at 76 ± 11% of maximal inspiratory mouth pressure (MIP) for 1h. MIP and breathing pattern during 3 min of normocapnic hyperpnea (NH) were measured before and after ILB. Breathing pattern and chest wall volume changes were assessed by optoelectronic plethysmography. After ILB, six subjects decreased MIP significantly (-16 ± 10%; p < 0.05), while the other six subjects did not (0 ± 7%, p = 0.916). Only subjects with decreased MIP after ILB lowered end-expiratory rib cage volume (volume at which inspiration is initiated) below resting values during ILB. During NH after ILB, tidal volume was smaller in subjects with decreased MIP (-19 ± 16%, p < 0.05), while it remained unchanged in the other group (-3 ± 11%, p = 0.463). These results suggest that respiratory muscle fatigue depends on the lung volume from which inspiratory efforts are made during ILB.


Asunto(s)
Ejercicios Respiratorios , Fuerza Muscular/fisiología , Músculos Respiratorios/fisiología , Pared Torácica/fisiología , Adulto , Femenino , Volumen Espiratorio Forzado/fisiología , Humanos , Pulmón/fisiología , Masculino , Pletismografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA