Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 142: 173-178, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31299599

RESUMEN

Rhamnogalacturonan I (RG-I), one of the pectic components of the plant cell wall, is composed of a backbone of repeating disaccharide units of rhamnose and galacturonic acid, and side chains, such as galactans, arabinans, and arabinogalactans. The activity of RG-I galactosyltransferase, which transfers galactosyl residues to rhamnosyl residues in the RG-I backbone, has not been detected until now. Here, we detected galactosyltransferase activity in azuki bean epicotyls using fluorogenic RG-I oligosaccharide acceptors. This enzyme prefers oligosaccharides with a degree of polymerization more than 9. The enzyme activity was detected in the Golgi apparatus, which is the site of pectin synthesis. In vitro hyperactivation of this enzyme was also observed. Moreover, enzyme activity was increased up to 40-fold in the presence of cationic surfactants or polyelectrolytes.


Asunto(s)
Galactosiltransferasas/análisis , Galactosiltransferasas/metabolismo , Pectinas/metabolismo , Vigna/enzimología , Activación Enzimática , Concentración de Iones de Hidrógeno , Oligosacáridos/metabolismo , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Especificidad por Sustrato , Vigna/metabolismo
2.
Biochem Biophys Res Commun ; 486(1): 130-136, 2017 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-28283389

RESUMEN

The pectin in plant cell walls consists of three domains: homogalacturonan, rhamnogalacturonan (RG)-I, and RG-II. It is predicted that around 50 different glycosyltransferases are required for their biosynthesis. Among these, the activities of only a few glycosyltransferases have been detected because pectic oligosaccharides are not readily available for use as substrates. In this study, fluorogenic pyridylaminated RG-I-backbone oligosaccharides (PA-RGs) with 3-14 degrees of polymerization (DP) were prepared. Using these oligosaccharides, the activity of RG-I:rhamnosyltransferase (RRT), involved in the biosynthesis of the RG-I backbone diglycosyl repeating units (-4GalUAα1-2Rhaα1-), was detected from the microsomes of azuki bean epicotyls. RRT was found to prefer longer acceptor substrates, PA-RGs with a DP > 7, and it does not require any metal ions for its activity. RRT is located in the Golgi and endoplasmic reticulum. The activity of RRT coincided with epicotyl growth, suggesting that RG-I biosynthesis is involved in plant growth.


Asunto(s)
Pared Celular/metabolismo , Glicosiltransferasas/metabolismo , Pectinas/biosíntesis , Proteínas de Plantas/metabolismo , Biocatálisis , Pared Celular/enzimología , Cromatografía Líquida de Alta Presión , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Espectroscopía de Resonancia Magnética , Oligosacáridos/metabolismo , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Vigna/enzimología , Vigna/metabolismo
3.
J Biol Chem ; 277(40): 36931-9, 2002 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-12145282

RESUMEN

Detergent extracts of microsomal fractions from suspension cultured cells of Rubus fruticosus (blackberry) were tested for their ability to synthesize in vitro sizable quantities of cellulose from UDP-glucose. Both Brij 58 and taurocholate were effective and yielded a substantial percentage of cellulose microfibrils together with (1-->3)-beta-d-glucan (callose). The taurocholate extracts, which did not require the addition of Mg(2+), were the most efficient, yielding roughly 20% of cellulose. This cellulose was characterized after callose removal by methylation analysis, electron microscopy, and electron and x-ray synchrotron diffractions; its resistance toward the acid Updegraff reagent was also evaluated. The cellulose microfibrils synthesized in vitro had the same diameter as the endogenous microfibrils isolated from primary cell walls. Both polymers diffracted as cellulose IV(I), a disorganized form of cellulose I. Besides these similarities, the in vitro microfibrils had a higher perfection and crystallinity as well as a better resistance toward the Updegraff reagent. These differences can be attributed to the mode of synthesis of the in vitro microfibrils that are able to grow independently in a neighbor-free environment, as opposed to the cellulose in the parent cell walls where new microfibrils have to interweave with the already laid polymers, with the result of a number of structural defects.


Asunto(s)
Celulosa/biosíntesis , Ligasas/metabolismo , Microfibrillas/metabolismo , Extractos Vegetales/metabolismo , Rosaceae/enzimología , Uridina Difosfato Glucosa/metabolismo , Bacterias/metabolismo , Pared Celular/enzimología , Pared Celular/ultraestructura , Cetomacrogol , Microscopía por Crioelectrón , Frutas/metabolismo , Técnicas In Vitro , Metilación , Microfibrillas/ultraestructura , Microscopía Electrónica , Rosaceae/ultraestructura , Especificidad de la Especie , Tensoactivos , Ácido Taurocólico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA