Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 4538, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872768

RESUMEN

Fluctuations in food availability and shifts in temperature are typical environmental changes experienced by animals. These environmental shifts sometimes portend more severe changes; e.g., chilly north winds precede the onset of winter. Such telltale signs may be indicators for animals to prepare for such a shift. Here we show that HEK293A cells, cultured under starvation conditions, can "memorize" a short exposure to cold temperature (15 °C), which was evidenced by their higher survival rate compared to cells continuously grown at 37 °C. We refer to this phenomenon as "cold adaptation". The cold-exposed cells retained high ATP levels, and addition of etomoxir, a fatty acid oxidation inhibitor, abrogated the enhanced cell survival. In our standard protocol, cold adaptation required linoleic acid (LA) supplementation along with the activity of Δ-6-desaturase (D6D), a key enzyme in LA metabolism. Moreover, supplementation with the LA metabolite arachidonic acid (AA), which is a high-affinity agonist of peroxisome proliferator-activated receptor-alpha (PPARα), was able to underpin the cold adaptation, even in the presence of a D6D inhibitor. Cold exposure with added LA or AA prompted a surge in PPARα levels, followed by the induction of D6D expression; addition of a PPARα antagonist or a D6D inhibitor abrogated both their expression, and reduced cell survival to control levels. We also found that the brief cold exposure transiently prevents PPARα degradation by inhibiting the ubiquitin proteasome system, and starvation contributes to the enhancement of PPARα activity by inhibiting mTORC1. Our results reveal an innate adaptive positive-feedback mechanism with a PPARα-D6D-AA axis that is triggered by a brief cold exposure in cells. "Cold adaptation" could have evolved to increase strength and resilience against imminent extreme cold temperatures.


Asunto(s)
PPAR alfa/metabolismo , Adenosina Trifosfato/metabolismo , Supervivencia Celular/efectos de los fármacos , Frío , Compuestos Epoxi/farmacología , Ácido Graso Desaturasas/antagonistas & inhibidores , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Células HEK293 , Humanos , Ácido Linoleico/metabolismo , Ácido Linoleico/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , PPAR alfa/agonistas , PPAR alfa/antagonistas & inhibidores , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
2.
J Biol Chem ; 290(41): 24760-71, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26294767

RESUMEN

Evidence suggests that the plasma membrane Ca(2+)-ATPase (PMCA), which is critical for maintaining a low intracellular Ca(2+) concentration ([Ca(2+)]i), utilizes glycolytically derived ATP in pancreatic ductal adenocarcinoma (PDAC) and that inhibition of glycolysis in PDAC cell lines results in ATP depletion, PMCA inhibition, and an irreversible [Ca(2+)]i overload. We explored whether this is a specific weakness of highly glycolytic PDAC by shifting PDAC cell (MIA PaCa-2 and PANC-1) metabolism from a highly glycolytic phenotype toward mitochondrial metabolism and assessing the effects of mitochondrial versus glycolytic inhibitors on ATP depletion, PMCA inhibition, and [Ca(2+)]i overload. The highly glycolytic phenotype of these cells was first reversed by depriving MIA PaCa-2 and PANC-1 cells of glucose and supplementing with α-ketoisocaproate or galactose. These culture conditions resulted in a significant decrease in both glycolytic flux and proliferation rate, and conferred resistance to ATP depletion by glycolytic inhibition while sensitizing cells to mitochondrial inhibition. Moreover, in direct contrast to cells exhibiting a high glycolytic rate, glycolytic inhibition had no effect on PMCA activity and resting [Ca(2+)]i in α-ketoisocaproate- and galactose-cultured cells, suggesting that the glycolytic dependence of the PMCA is a specific vulnerability of PDAC cells exhibiting the Warburg phenotype.


Asunto(s)
Adenosina Trifosfato/metabolismo , Membrana Celular/enzimología , Glucólisis , Neoplasias Pancreáticas/patología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Adenocarcinoma/patología , Calcio/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Inhibidores Enzimáticos/farmacología , Galactosa/farmacología , Glucólisis/efectos de los fármacos , Humanos , Ácido Yodoacético/farmacología , Cetoácidos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA