Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life Sci ; 328: 121878, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392779

RESUMEN

AIMS: Mitragynine (MG) is an alkaloid found in Mitragyna speciosa (kratom), a plant used to self-treat symptoms of opioid withdrawal and pain. Kratom products are commonly used in combination with cannabis, with the self-treatment of pain being a primary motivator of use. Both cannabinoids and kratom alkaloids have been characterized to alleviate symptoms in preclinical models of neuropathic pain such as chemotherapy-induced peripheral neuropathy (CIPN). However, the potential involvement of cannabinoid mechanisms in MG's efficacy in a rodent model of CIPN have yet to be explored. MAIN METHODS: Prevention of oxaliplatin-induced mechanical hypersensitivity and formalin-induced nociception were assessed following intraperitoneal administration of MG and CB1, CB2, or TRPV1 antagonists in wildtype and cannabinoid receptor knockout mice. The effects of oxaliplatin and MG exposure on the spinal cord endocannabinoid lipidome was assessed by HPLC-MS/MS. KEY FINDINGS: The efficacy of MG on oxaliplatin-induced mechanical hypersensitivity was partially attenuated upon genetic deletion of cannabinoid receptors, and completely blocked upon pharmacological inhibition of CB1, CB2, and TRPV1 channels. This cannabinoid involvement was found to be selective to a model of neuropathic pain, with minimal effects on MG-induced antinociception in a model of formalin-induced pain. Oxaliplatin was found to selectively disrupt the endocannabinoid lipidome in the spinal cord, which was prevented by repeated MG exposure. SIGNIFICANCE: Our findings suggest that cannabinoid mechanisms contribute to the therapeutic efficacy of the kratom alkaloid MG in a model of CIPN, which may result in increased therapeutic efficacy when co-administered with cannabinoids.


Asunto(s)
Antineoplásicos , Cannabinoides , Mitragyna , Neuralgia , Alcaloides de Triptamina Secologanina , Ratones , Animales , Cannabinoides/farmacología , Endocannabinoides , Oxaliplatino , Espectrometría de Masas en Tándem , Antineoplásicos/efectos adversos , Alcaloides de Triptamina Secologanina/efectos adversos , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/prevención & control , Receptores de Cannabinoides
3.
Endocrinology ; 148(10): 5088-94, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17627999

RESUMEN

Nesfatin-1 is a recently identified satiety molecule detectable in neurons of the hypothalamus and nucleus of solitary tract (NTS). Immunohistochemical studies revealed nesfatin-1-immunoreactive (irNEF) cells in the Edinger-Westphal nucleus, dorsal motor nucleus of vagus, and caudal raphe nuclei of the rats, in addition to the hypothalamus and NTS reported in the initial study. Double-labeling immunohistochemistry showed that irNEF cells were vasopressin or oxytocin positive in the paraventricular and supraoptic nucleus; cocaine-amphetamine-regulated transcript or tyrosine hydroxylase positive in arcuate nucleus; cocaine-amphetamine-regulated transcript or melanin concentrating hormone positive in the lateral hypothalamus. In the brainstem, irNEF neurons were choline acetyltransferase positive in the Edinger-Westphal nucleus and dorsal motor nucleus of vagus; tyrosine hydroxylase positive in the NTS; and 5-hydroxytryptamine positive in the caudal raphe nucleus. The biological activity of rat nesfatin-1 (1-82) (100 nm) was assessed by the Ca(2+) microfluorometric method. Nesfatin-1 elevated intracellular Ca(2+) concentrations [Ca(2+)](i) in dissociated and cultured hypothalamic neurons. The response was prevented by pretreating the cells with pertussis toxin (100 nm) or Ca(2+)-free solution and by a combination of the L-type and P/Q-type calcium channel blocker verapamil (1 microm) and omega-conotoxin MVIIC (100 nm). The protein kinase A inhibitor KT 5720 (1 microm) suppressed nesfatin-1-induced rise in [Ca(2+)](i). The result shows that irNEF is distributed to several discrete nuclei in the brainstem, in addition to the hypothalamus and NTS reported earlier, and that the peptide interacts with a G protein-coupled receptor, leading to an increase of [Ca(2+)](i), which is linked to protein kinase A activation in cultured rat hypothalamic neurons.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN , Activación Enzimática , Femenino , Hipotálamo/citología , Hipotálamo/metabolismo , Inmunohistoquímica , Membranas Intracelulares/metabolismo , Masculino , Bulbo Raquídeo/metabolismo , Neuronas/metabolismo , Nucleobindinas , Concentración Osmolar , Puente/metabolismo , Ratas , Ratas Sprague-Dawley , Distribución Tisular
4.
Eur J Pharmacol ; 518(2-3): 182-6, 2005 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-16054619

RESUMEN

Increased endogenous opioid activity has been implicated in cholestatic pruritus. In the present study, we have further defined the involvement of opioids in cholestasis. Rats underwent either bile duct ligation or a sham operation. Five days after surgery, brains were removed and agonist-stimulated [35S]GTPgammaS binding was measured in ten brain regions. Serum endomorphin-2, leu-enkephalin and dynorphin A levels were measured using ELISA on day five. Microdialysis to the dorsal hypothalamic area was conducted in the same animal before and after cholestasis. Dialysate endomorphin-1, leu-enkephalin and dynorphin A levels also were measured. Delta- and kappa-stimulated binding was significantly decreased in cholestasic animals compared to controls in the dorsal hypothalamic area. The serum dynorphin A level was lower in the cholestasic group than in controls (2.56+/-0.09 and 3.29+/-0.22 ng/ml, respectively, P<0.01). We propose that pruritus in cholestasis may result from an impaired balance between mu- and kappa-opioid systems.


Asunto(s)
Colestasis/metabolismo , Receptores Opioides kappa/metabolismo , Animales , Unión Competitiva/efectos de los fármacos , Encéfalo/metabolismo , Colestasis/sangre , Colestasis/patología , Soluciones para Diálisis/química , Modelos Animales de Enfermedad , Dinorfinas/análisis , Dinorfinas/sangre , Dinorfinas/farmacología , Encefalina Leucina/análisis , Encefalina Leucina/sangre , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Hipotálamo/metabolismo , Masculino , Microdiálisis , Oligopéptidos/análisis , Oligopéptidos/sangre , Ratas , Ratas Sprague-Dawley , Receptores Opioides kappa/agonistas , Radioisótopos de Azufre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA