Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Chem ; 11: 1260165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780989

RESUMEN

Milletia pinnata oil and Nardostachys jatamansi are rich sources of bioactive compounds and have been utilized to formulate various herbal formulations, however, due to certain environmental conditions, pure extract form is prone to degradation. Therefore, in this, study, a green hydrodistillation technology was used to extract M. pinnata oil and N. jatamansi root for the further application in development of pectin crosslinked carboxymethyl cellulose/guar-gum nano hydrogel. Both oil and extract revealed the presence of spirojatamol and hexadecanoic acid methyl ester. Varied concentrations (w/w) of cross-linker and gelling agent were used to formulate oil emulsion extract gel (OEEG1, OEG1, OEEG2, OEG2, OEEG3, OEG3, OEEG4, OEG4, OEEG5, OEG5), in which OEEG2 and OEG2 were found to be stable. The hydrogel displayed an average droplet size of 186.7 nm and a zeta potential of -20.5 mV. Endo and exothermic peaks and the key functional groups including hydroxyl, amide II, and amide III groups confirmed thermal stability and molecular structure. The smooth surface confirmed structural uniformity. Bactericidal activity against both Gram-positive (25.41 ± 0.09 mm) and Gram-negative (27.25 ± 0.01 mm) bacteria and anti-inflammatory activity (49.25%-83.47%) makes nanohydrogel a potential option for treating various infections caused by pathogenic microorganisms. In conclusion, the use of green hydrodistillation technology can be used to extract the bioactive compounds that can be used in formulation of biocompatible and hydrophobic nanohydrogels. Their ability to absorb target-specific drugs makes them a potential option for treating various infections caused by pathogenic microorganisms.

2.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835343

RESUMEN

Mangosteen peel, a waste produced during mangosteen processing, has been reported to be rich in xanthone and anthocyanin, both of which possess vital biological activities such as anti-cancer properties. The objectives of this study were to analyze various xanthones and anthocyanins in mangosteen peel by UPLC-MS/MS for the subsequent preparation of both xanthone and anthocyanin nanoemulsions to study their inhibition effects on liver cancer cells HepG2. Results showed that methanol was the optimal solvent for the extraction of xanthones and anthocyanins, with a total amount of 68,543.39 and 2909.57 µg/g, respectively. A total of seven xanthones, including garcinone C (513.06 µg/g), garcinone D (469.82 µg/g), γ-mangostin (11,100.72 µg/g), 8-desoxygartanin (1490.61 µg/g), gartanin (2398.96 µg/g), α-mangostin (51,062.21 µg/g) and ß-mangostin (1508.01 µg/g), as well as two anthocyanins including cyanidin-3-sophoroside (2889.95 µg/g) and cyanidin-3-glucoside (19.72 µg/g), were present in mangosteen peel. The xanthone nanoemulsion was prepared by mixing an appropriate portion of soybean oil, CITREM, Tween 80 and deionized water, while the anthocyanin nanoemulsion composed of soybean oil, ethanol, PEG400, lecithin, Tween 80, glycerol and deionized water was prepared as well. The mean particle size of the xanthone extract and nanoemulsion were, respectively, 22.1 and 14.0 nm as determined by DLS, while the zeta potential was -87.7 and -61.5 mV. Comparatively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells, with the IC50 being 5.78 µg/mL for the former and 6.23 µg/mL for the latter. However, the anthocyanin nanoemulsion failed to inhibit growth of HepG2 cells. Cell cycle analysis revealed that the proportion of the sub-G1 phase followed a dose-dependent increase, while that of the G0/G1 phase showed a dose-dependent decline for both xanthone extracts and nanoemulsions, with the cell cycle being possibly arrested at the S phase. The proportion of late apoptosis cells also followed a dose-dependent rise for both xanthone extracts and nanoemulsions, with the latter resulting in a much higher proportion at the same dose. Similarly, the activities of caspase-3, caspase-8 and caspase-9 followed a dose-dependent increase for both xanthone extracts and nanoemulsions, with the latter exhibiting a higher activity at the same dose. Collectively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells. Further research is needed to study the anti-tumor effect in vivo.


Asunto(s)
Garcinia mangostana , Neoplasias Hepáticas , Xantonas , Humanos , Antocianinas , Espectrometría de Masas en Tándem , Aceite de Soja , Cromatografía Liquida , Polisorbatos , Xantonas/farmacología , Línea Celular Tumoral , Extractos Vegetales/farmacología , Agua
3.
Bioengineering (Basel) ; 10(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36671636

RESUMEN

The ayurvedic herb Emblica officinalis (E. officinalis) is a gift to mankind to acquire a healthy lifestyle. It has great therapeutic and nutritional importance. Emblica officinalis, also known as Indian gooseberry or Amla, is a member of the Euphorbiaceae family. Amla is beneficial for treating illnesses in all its forms. The most crucial component is a fruit, which is also the most common. It is used frequently in Indian medicine as a restorative, diuretic, liver tonic, refrigerant, stomachic, laxative, antipyretic, hair tonic, ulcer preventive, and for the common cold and fever. Hyperlipidemia is also known as high cholesterol or an increase in one or more lipid-containing blood proteins. Various phytocompounds, including polyphenols, vitamins, amino acids, fixed oils, and flavonoids, are present in the various parts of E. officinalis. E. officinalis has been linked to a variety of pharmacological effects in earlier studies, including hepatoprotective, immunomodulatory, antimicrobial, radioprotective, and hyperlipidemic effects. The amla-derived active ingredients and food products nevertheless encounter challenges such as instability and interactions with other food matrices. Considering the issue from this perspective, food component nanoencapsulation is a young and cutting-edge field for controlled and targeted delivery with a range of preventative activities. The nanoformulation of E. officinalis facilitates the release of active components or food ingredients, increased bioaccessibility, enhanced therapeutic activities, and digestion in the human body. Accordingly, the current review provides a summary of the phytoconstituents of E. officinalis, pharmacological actions detailing the plant E. officinalis's traditional uses, and especially hyperlipidemic activity. Correspondingly, the article describes the uses of nanotechnology in amla therapeutics and functional ingredients.

4.
J Agric Food Chem ; 70(25): 7762-7772, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35704793

RESUMEN

Owing to the presence of significant levels of toxic furan compounds reported globally in commercial foods by various food authorities, the objectives of this study were to develop an analytical method for determination of furan and its 10 derivatives in commercial foods using headspace-solid phase microextraction (HS-SPME)-Arrow coupled with gas chromatography-tandem mass spectrometry. Furan and its 10 derivatives were separated within 10 min by employing an HP-5MS capillary column with d4-furan as the internal standard for quantitation. The most optimal sample weight and extraction time for various commercial food samples, respectively, ranged from 1 to 5 g and 10-15 min depending on the sample variety. For extraction, carboxen/poly(dimethylsiloxane) (CAR/PDMS) cellulose was used with the temperature at 30 °C, equilibration time of 15 min, and desorption time of 3 min. The limit of detection ranged from 0.001 to 1.071 ng/g, while the limit of quantitation ranged from 0.003 to 3.571 ng/g. A high precision and accuracy were obtained for this method. The total furan content in commercial foods ranged from nd to 40 725.85 ng/g, in which the mean contents were the highest for brewed coffee (35 082.26 ng/g) and canned coffee (25 152.22 ng/g), while the lowest were for potato chip and cookies (0.57-1.48 ng/g), donut (1.50 ng/g), milk (0.34-30.38 ng/g), and oat (6.56 ng/g).


Asunto(s)
Café , Microextracción en Fase Sólida , Café/química , Furanos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem
5.
Molecules ; 27(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35630548

RESUMEN

Ginseng (Panax quinquefolius), a popular herbal and nutritional supplement consumed worldwide, has been demonstrated to possess vital biological activities, which can be attributed to the presence of ginsenosides. However, the presence of ginsenosides in ginseng root residue, a by-product obtained during processing of ginseng beverage, remains unexplored. The objectives of this study were to develop a high-performance liquid chromatography-photodiode array detection-mass spectrometry (HPLC-DAD-ESI-MS) and an ultra-high-performance-liquid-chromatography-tandem mass spectrometry (UPLC-HRMS-MS/MS) method for the comparison of ginsenoside analysis in ginseng root residue. Results showed that by employing a Supelco Ascentis Express C18 column (150 × 4.6 mm ID, particle size 2.7 µm) and a gradient mobile phase of deionized water and acetonitrile with a flow rate at 1 mL/min and detection at 205 nm, a total of 10 ginsenosides, including internal standard saikosaponin A, were separated within 18 min and detected by HPLC-DAD-ESI-MS. Whereas with UPLC-HRMS-MS/MS, all the 10 ginsenosides were separated within six minutes by using an Acquity UPLC BEH C18 column (50 × 2.1 mm ID, particle size 1.7 µm, 130 Å) and a gradient mobile phase of ammonium acetate and acetonitrile with column temperature at 50 °C, flow rate at 0.4 mL/min and detection by selected reaction monitoring (SRM) mode. High accuracy and precision was shown, with limit of quantitation (LOQ) ranging from 0.2−1.9 µg/g for HPLC-DAD-ESI-MS and 0.269−6.640 ng/g for UPLC-HRMS-MS/MS. The contents of nine ginsenosides in the ginseng root residue ranged from

Asunto(s)
Ginsenósidos , Panax , Acetonitrilos , Cromatografía Líquida de Alta Presión/métodos , Ginsenósidos/química , Panax/química , Espectrometría de Masas en Tándem/métodos
6.
J Hazard Mater ; 415: 125701, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34088189

RESUMEN

This study aims to synthesize a magnetic activated carbon nanocomposite from green tea leaf waste (MNPs-GTAC) for evaluation of adsorption efficiency of 4 priority polycyclic aromatic hydrocarbons (PAHs). MNPs-GTAC contained spherically-shaped MNPs with cubic spinel structure, surface area at 118.8 m2/g, particle size at 8.6 nm and saturation magnetization at 34.2 emu/g. PAH adsorption reached a plateau at an MNPs-GTAC dose of 50 or 60 mg/L, pH of 2-4 and ionic strength of 0.1-10%, with PAH reduction in the presence of humic acid being compensated by addition of 0.1% sodium chloride. Kinetics was rapid attaining 80% removal within 5 min and the pseudo-second-order rate decreased in this order: Benzo[a]anthracene>Chrysene>Benzo[b]fluoranthene>Benzo[a]pyrene. Isotherm modeling revealed a Langmuir type-2 shape with the maximum adsorption capacity being 28.08, 22.75, 19.14 and 15.86 mg/g for Benzo[b]fluoranthene, Benzo[a]pyrene, Chrysene and Benzo[a]anthracene, respectively. Temperature study showed the PAH adsorption to be an endothermic and spontaneous process with increased randomness at solid-solution interface. Acetonitrile could completely recover the adsorbed PAH and MNPs-GTAC was successfully recycled 5 times with a minimum loss. Application to mineral water showed 86-98% and 72-89% removal for PAHs spiked respectively at 0.1 and 1 mg/L, while a complete removal was attained in tap and river waters.


Asunto(s)
Nanocompuestos , Hidrocarburos Policíclicos Aromáticos , Carbón Orgánico , Fenómenos Magnéticos , Hidrocarburos Policíclicos Aromáticos/análisis , , Agua
7.
Nutrition ; 51-52: 86-94, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29625407

RESUMEN

OBJECTIVES: The aim of this study was to examine the effects of several vegetable oils and blended oil composed of soybean and camellia oils on blood lipid reduction and antioxidative activity. METHODS: Forty male hamsters were fed an AIN-93 G diet for 1 wk, followed by dividing into five groups: control group-1 was fed a low-fat diet containing 5% oil for 6 wk, and the other four groups were fed high-fat diets with group-2 containing 14% palm oil, group-3 containing 14% camellia oil, group-4 containing 14% soybean oil, and group-5 containing 14% blended oil (8.4% soybean oil and 5.6% camellia oil) along with 0.2% cholesterol and 0.1% bile acid. RESULTS: High-fat diets raised serum triacylglycerol, total cholesterol, and aspartate aminotransferase in hamsters without affecting alanine aminotransferase. Compared with palm oil-containing diet, the other three high-fat diets reduced serum total cholesterol, low-density lipoprotein cholesterol, and the ratio of low-density lipoprotein to high-density lipoprotein cholesterol with an opposite trend for liver total cholesterol. However, compared with the control group, the serum high-density lipoprotein cholesterol level was raised for all four high-fat diets. The higher the degree of oil unsaturation, the higher the serum thiobarbituric acid reactive substances and the lower the liver triacylglycerol level and activities of fatty acid synthase, glucose 6-phosphate dehydrogenase, and malic enzymes. Both soybean and blended oils lowered the antioxidative activity of liver. CONCLUSION: Camellia and blended oils were more efficient than soybean oil in elevating serum high-density lipoprotein cholesterol and decreasing the ratio of low-density lipoprotein to high-density lipoprotein cholesterol in hamsters.


Asunto(s)
Antioxidantes/metabolismo , Camellia , Enfermedades Cardiovasculares/prevención & control , Dieta/métodos , Aceite de Soja/farmacología , Alanina Transaminasa/sangre , Animales , Colesterol/sangre , Cricetinae , Modelos Animales de Enfermedad , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Masculino , Aceites de Plantas/metabolismo , Aceites de Plantas/farmacología , Aceite de Soja/sangre , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Triglicéridos/sangre
8.
J Sci Food Agric ; 98(1): 51-63, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28516478

RESUMEN

BACKGROUND: Curcuminoid from Curcuma longa Linnaeus has been demonstrated to be effective in anti-cancer and anti-inflammation. The objectives of the present study were to prepare curcuminoid dispersion and nanoemulsion from C. longa and determine their oral bioavailabilities in rats. RESULTS: After curcuminoid extraction using 99.5% ethanol, bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC) and curcumin were separated within 10 min by high-performance liquid chromatography using an Eclipse XDB-C18 column (Agilent, Palo Alto, CA, USA) and a gradient mobile phase of 0.1% aqueous formic acid and acetonitrile, with a flow rate of 1 mL min-1 , column temperature of 35 °C and detection wavelength of 425 nm. Curcuminoid nanoemulsion at a particle size of 12.1 nm and encapsulation efficiency 98.8% was prepared using lecithin, Tween 80 and water. A pharmacokinetic study in rats revealed that the parameters including Tmax , Cmax , t1/2 and the area under the curve were higher for curcuminoid nanoemulsions than for curcuminoid dispersion at the same dose employed for gavage administration, whereas, for intravenous injection, an opposite trend was shown. The oral bioavailabilities of BDMC, DMC, curcumin and total curcuminoids in nanoemulsion and dispersion were 34.39 and 4.65%, 39.93 and 5.49%, 47.82 and 9.38%, and 46 and 8.7%, respectively. CONCLUSION: The results of the present study demonstrate a higher oral bioavailability after incorporation of curcuminoid into nanoemulsion, facilitating its application as a botanic drug. © 2017 Society of Chemical Industry.


Asunto(s)
Curcuma/química , Curcumina/farmacocinética , Extractos Vegetales/farmacocinética , Animales , Curcumina/administración & dosificación , Curcumina/química , Emulsiones/administración & dosificación , Emulsiones/química , Emulsiones/farmacocinética , Masculino , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley
9.
Sci Rep ; 6: 25426, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27150134

RESUMEN

Carotenoids have been known to reduce the risk of several diseases including cancer and cardiovascular. However, carotenoids are unstable and susceptible to degradation. Rhinacanthus nasutus (L.) Kurz (R. nasutus), a Chinese medicinal herb rich in carotenoids, was reported to possess vital biological activities such as anti-cancer. This study intends to isolate carotenoids from R. nasutus by column chromatography, identify and quantify by HPLC-MS, and prepare carotenoid microemulsions for determination of absolute bioavailability in rats. Initially, carotenoid fraction was isolated using 250 mL ethyl acetate poured into an open-column packed with magnesium oxide-diatomaceous earth (1:3, w/w). Fourteen carotenoids including internal standard ß-apo-8'-carotenal were resolved within 62 min by a YMC C30 column and gradient mobile phase of methanol-acetonitrile-water (82:14:4, v/v/v) and methylene chloride. Highly stable carotenoid microemulsions were prepared using a mixture of Capryol(TM)90, Transcutol®HP, Tween 80 and deionized water, with the mean particle being 10.4 nm for oral administration and 10.7 nm for intravenous injection. Pharmacokinetic study revealed that the absolute bioavailability of carotenoids in microemulsions and dispersion was 0.45% and 0.11%, respectively, while a much higher value of 6.25% and 1.57% were shown for lutein, demonstrating 4-fold enhancement in bioavailability upon incorporation of R. nasutus carotenoids into a microemulsion system.


Asunto(s)
Acanthaceae/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacocinética , Disponibilidad Biológica , Carotenoides/aislamiento & purificación , Carotenoides/farmacocinética , Animales , Antioxidantes/administración & dosificación , Carotenoides/administración & dosificación , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Emulsiones/administración & dosificación , Espectrometría de Masas , Extractos Vegetales/administración & dosificación , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacocinética , Ratas
10.
J Cell Mol Med ; 19(7): 1697-709, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25781909

RESUMEN

The objectives of this study are to investigate antiproliferative effect and mechanisms of bioactive compounds from Gynostemma pentaphyllum (G. pentaphyllum) on lung carcinoma cell A549. Saponins, carotenoids and chlorophylls were extracted and fractionated by column chromatography, and were subjected to high-performance liquid chromatography-mass spectrometry analyses. The saponin fraction, which consisted mainly of gypenoside (Gyp) XXII and XXIII, rather than the carotenoid and chlorophyll ones, was effective in inhibiting A549 cell growth in a concentration- and a time-dependent manner as evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The estimated half maximal inhibitory concentration (IC50 ) of Gyp on A549 cells was 30.6 µg/ml. Gyp was further demonstrated to induce an apparent arrest of the A549 cell cycle at both the S phase and the G2/M phase, accompanied by a concentration- and a time-dependent increase in the proportions of both the early and late apoptotic cells. Furthermore, Gyp down-regulated cellular expression of cyclin A and B as well as BCL-2, while up-regulated the expression of BAX, DNA degradation factor 35 KD, poly [ADP-ribose] polymerase 1, p53, p21 and caspase-3. Nevertheless, both the treatment of a p53 inhibitor, pifithrin-α, and the small hairpin RNA-mediated p53 knockdown in the A549 cells did not alter the growth inhibition effect induced by Gyp. As a result, the cell cycle arrest and apoptosis of A549 cells induced by Gyp would most likely proceed through p53-independent pathway(s).


Asunto(s)
Neoplasias Pulmonares/patología , Proteína p53 Supresora de Tumor/metabolismo , Anexina A5/metabolismo , Apoptosis/efectos de los fármacos , Carotenoides/análisis , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Clorofila/análisis , Cromatografía Líquida de Alta Presión , Citometría de Flujo , Gynostemma/química , Humanos , Espectrometría de Masas , Extractos Vegetales/química , Extractos Vegetales/farmacología , Saponinas/análisis
11.
Int J Nanomedicine ; 7: 4419-32, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927758

RESUMEN

BACKGROUND: Chelation therapy involving organic chelators for treatment of heavy metal intoxication can cause cardiac arrest, kidney overload, mineral deficiency, and anemia. METHODS: In this study, superparamagnetic iron oxide nanoparticles (SPIONs) modified with an edible biopolymer poly(γ-glutamic acid) (PGA) were synthesized by coprecipitation method, characterized and evaluated for their removal efficiency of heavy metals from a metal solution, and simulated gastrointestinal fluid (SGIF). RESULTS: Instrumental characterization of bare- and PGA-SPIONs revealed 7% coating of PGA on SPIONs with a spherical shape and an iron oxide spinel structure belonging to magnetite. The particle sizes as determined from transmission electron microscopy images were 8.5 and 11.7 nm for bare- and PGA-SPIONs, respectively, while the magnetization values were 70.3 and 61.5 emu/g. Upon coating with PGA, the zeta potentials were shifted from positive to negative at most of the environmental pH (3-8) and biological pH (1-8), implying good dispersion in aqueous suspension and favorable conditions for heavy metal removal. Batch studies showed rapid removal of lead and cadmium with the kinetic rates estimated by pseudo-second-order model being 0.212 and 0.424 g/mg · min, respectively. A maximum removal occurred in the pH range 4-8 in deionized water and 5-8 in SGIF corresponding to most gastrointestinal pH except for the stomach. Addition of different ionic strengths (0.001-1 M sodium acetate) and essential metals (Cu, Fe, Zn, Mg, Ca, and K) did not show any marked influence on lead removal by PGA-SPIONs, but significantly reduced the binding of cadmium. Compared to deionized water, the lead removal from SGIF was high at all pH with the Langmuir monolayer removal capacity being 98.70 mg/g for the former and 147.71 mg/g for the latter. However, a lower cadmium removal capacity was shown for SGIF (23.15 mg/g) than for deionized water (31.13 mg/g). CONCLUSION: These results suggest that PGA-SPIONs could be used as a metal chelator for clinical treatment of metal poisoning.


Asunto(s)
Nanopartículas de Magnetita/química , Metales Pesados/aislamiento & purificación , Ácido Poliglutámico/análogos & derivados , Terapia por Quelación , Contenido Digestivo/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Metales Pesados/química , Metales Pesados/metabolismo , Modelos Biológicos , Concentración Osmolar , Ácido Poliglutámico/química , Ácido Poliglutámico/metabolismo , Temperatura
12.
J Agric Food Chem ; 60(24): 6108-15, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22656126

RESUMEN

Taraxacum formosanum, a well-known Chinese herb shown to be protective against hepatic cancer as well as liver and lung damage, may be attributed to the presence of abundant carotenoids and chlorophylls. However, the variety and content of chlorophylls remain uncertain. The objectives of this study were to develop an high-performance liquid chromatography-diode array detection-mass spectrometry method for determination of chlorophylls in T. formosanum and preparation by column chromatography. An HyPURITY C18 column and a gradient mobile phase of water (A), methanol (B), acetonitrile (C), and acetone (D) could resolve 10 chlorophylls and an internal standard Fast Green FCF within 30 min with a flow rate at 1 mL/min and detection at 660 nm. Both chlorophylls a and a' were present in the largest amount (1389.6 µg/g), followed by chlorophylls b and b' (561.2 µg/g), pheophytins a and a' (31.7 µg/g), hydroxychlorophyll b (26.5 µg/g), hydroxychlorophylls a and a' (9.8 µg/g), and chlorophyllides a and a' (0.35 µg/g). A glass column containing 52 g of magnesium oxide-diatomaceous earth (1:3, w/w) could elute chlorophylls with 800 mL of acetone containing 50% ethanol at a flow rate of 10 mL/min. Some new chlorophyll derivatives including chlorophyllide b, pyropheophorbide b, hydroxypheophytin a, and hydroxypheophytin a' were generated during column chromatography but accompanied by a 63% loss in total chlorophylls. Thus, the possibility of chlorophyll fraction prepared from T. formosanum as a raw material for future production of functional food needs further investigation.


Asunto(s)
Clorofila/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Taraxacum/química , Clorofila/análogos & derivados , Clorofila/aislamiento & purificación , Clorofila A , Medicamentos Herbarios Chinos/química , Feofitinas/análisis
13.
Int J Mol Sci ; 13(1): 260-85, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22312251

RESUMEN

A liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed for the determination of phenolic acids and flavonoids in a medicinal Chinese herb Taraxacum formosanum Kitam. Initially, both phenolic acids and flavonoids were extracted with 50% ethanol in a water-bath at 60 °C for 3 h and eventually separated into acidic fraction and neutral fraction by using a C(18) cartridge. A total of 29 compounds were separated within 68 min by employing a Gemini C(18) column and a gradient solvent system of 0.1% formic acid and acetonitrile at a flow rate of 1.0 mL/min. Based on the retention behavior as well as absorption and mass spectra, 19 phenolic acids and 10 flavonoids were identified and quantified in T. formosanum, with the former ranging from 14.1 µg/g to 10,870.4 µg/g, and the latter from 9.9 µg/g to 325.8 µg/g. For further identification of flavonoids, a post-column derivatization method involving shift reagents such as sodium acetate or aluminum chloride was used and the absorption spectral characteristics without or with shift reagents were compared. An internal standard syringic acid was used for quantitation of phenolic acids, whereas (±) naringenin was found suitable for quantitation of flavonoids. The developed LC-MS/MS method showed high reproducibility, as evident from the relative standard deviation (RSD) values for intra-day and inter-day variability being 1.0-6.8% and 2.0-7.7% for phenolic acids and 3.7-7.4% and 1.5-8.1% for flavonoids, respectively, and thus may be applied for simultaneous determination of phenolic acids and flavonoids in Chinese herb and nutraceuticals.


Asunto(s)
Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Hidroxibenzoatos/análisis , Espectrometría de Masas en Tándem , Taraxacum/química , Cromatografía Líquida de Alta Presión/normas , Etanol/química , Flavonoides/química , Flavonoides/aislamiento & purificación , Hidroxibenzoatos/química , Hidroxibenzoatos/aislamiento & purificación , Metanol/química , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Control de Calidad , Acetato de Sodio/química , Extracción en Fase Sólida , Espectrometría de Masas en Tándem/normas , Taraxacum/metabolismo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA