Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Elife ; 112022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35770968

RESUMEN

The stress response necessitates an immediate boost in vital physiological functions from their homeostatic operation to an elevated emergency response. However, the neural mechanisms underlying this state-dependent change remain largely unknown. Using a combination of in vivo and ex vivo electrophysiology with computational modeling, we report that corticotropin releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN), the effector neurons of hormonal stress response, rapidly transition between distinct activity states through recurrent inhibition. Specifically, in vivo optrode recording shows that under non-stress conditions, CRHPVN neurons often fire with rhythmic brief bursts (RB), which, somewhat counterintuitively, constrains firing rate due to long (~2 s) interburst intervals. Stressful stimuli rapidly switch RB to continuous single spiking (SS), permitting a large increase in firing rate. A spiking network model shows that recurrent inhibition can control this activity-state switch, and more broadly the gain of spiking responses to excitatory inputs. In biological CRHPVN neurons ex vivo, the injection of whole-cell currents derived from our computational model recreates the in vivo-like switch between RB and SS, providing direct evidence that physiologically relevant network inputs enable state-dependent computation in single neurons. Together, we present a novel mechanism for state-dependent activity dynamics in CRHPVN neurons.


Asunto(s)
Hormona Liberadora de Corticotropina , Núcleo Hipotalámico Paraventricular , Hormona Liberadora de Corticotropina/metabolismo , Hipotálamo/metabolismo , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/metabolismo
2.
Elife ; 112022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35420543

RESUMEN

Preys use their memory - where they sensed a predatory threat and whether a safe shelter is nearby - to dynamically control their survival instinct to avoid harm and reach safety. However, it remains unknown which brain regions are involved, and how such top-down control of innate behavior is implemented at the circuit level. Here, using adult male mice, we show that the anterior hypothalamic nucleus (AHN) is best positioned to control this task as an exclusive target of the hippocampus (HPC) within the medial hypothalamic defense system. Selective optogenetic stimulation and inhibition of hippocampal inputs to the AHN revealed that the HPC→AHN pathway not only mediates the contextual memory of predator threats but also controls the goal-directed escape by transmitting information about the surrounding environment. These results reveal a new mechanism for experience-dependent, top-down control of innate defensive behaviors.


Asunto(s)
Conducta Animal , Miedo , Animales , Conducta Animal/fisiología , Miedo/fisiología , Hipocampo , Hipotálamo/fisiología , Instinto , Masculino , Ratones , Vías Nerviosas/fisiología
3.
Nat Rev Neurosci ; 16(7): 377-88, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26087679

RESUMEN

Stress necessitates an immediate engagement of multiple neural and endocrine systems. However, exposure to a single stressor causes adaptive changes that modify responses to subsequent stressors. Recent studies examining synapses onto neuroendocrine cells in the paraventricular nucleus of the hypothalamus demonstrate that stressful experiences leave indelible marks that alter the ability of these synapses to undergo plasticity. These adaptations include a unique form of metaplasticity at glutamatergic synapses, bidirectional changes in endocannabinoid signalling and bidirectional changes in strength at GABAergic synapses that rely on distinct temporal windows following stress. This rich repertoire of plasticity is likely to represent an important building block for dynamic, experience-dependent modulation of neuroendocrine stress adaptation.


Asunto(s)
Hipotálamo/metabolismo , Plasticidad Neuronal/fisiología , Estrés Psicológico/metabolismo , Sinapsis/metabolismo , Animales , Humanos , Red Nerviosa/metabolismo , Estrés Psicológico/psicología
4.
Nat Neurosci ; 16(5): 605-12, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23563580

RESUMEN

Exposure to a stressor sensitizes behavioral and hormonal responses to future stressors. Stress-associated release of noradrenaline enhances the capacity of central synapses to show plasticity (metaplasticity). We found noradrenaline-dependent metaplasticity at GABA synapses in the paraventricular nucleus of the hypothalamus in rat and mouse that controls the hypothalamic-pituitary-adrenal axis. In vivo stress exposure was required for these synapses to undergo activity-dependent long-term potentiation (LTPGABA). The activation of ß-adrenergic receptors during stress functionally upregulated metabotropic glutamate receptor 1 (mGluR1), allowing for mGluR1-dependent LTPGABA during afferent bursts. LTPGABA was expressed postsynaptically and manifested as the emergence of new functional synapses. Our findings provide, to the best of our knowledge, the first demonstration that noradrenaline release during an in vivo challenge alters information storage capacity at GABA synapses. Because these GABA synapses become excitatory following acute stress, this metaplasticity may contribute to neuroendocrine sensitization to stress.


Asunto(s)
Plasticidad Neuronal/fisiología , Norepinefrina/metabolismo , Estrés Psicológico/metabolismo , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Channelrhodopsins , Quelantes/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Hipotálamo/citología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Luz , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal/efectos de los fármacos , Neurotransmisores/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Estrés Psicológico/inducido químicamente , Estrés Psicológico/patología , Sinapsis/efectos de los fármacos
5.
Nat Neurosci ; 16(5): 596-604, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23563581

RESUMEN

Stressful experience initiates a neuroendocrine response culminating in the release of glucocorticoid hormones into the blood. Glucocorticoids feed back to the brain, causing adaptations that prevent excessive hormone responses to subsequent challenges. How these changes occur remains unknown. We found that glucocorticoid receptor activation in rodent hypothalamic neuroendocrine neurons following in vivo stress is a metaplastic signal that allows GABA synapses to undergo activity-dependent long-term depression (LTDGABA). LTDGABA was unmasked through glucocorticoid receptor-dependent inhibition of Regulator of G protein Signaling 4 (RGS4), which amplified signaling through postsynaptic metabotropic glutamate receptors. This drove somatodendritic opioid release, resulting in a persistent retrograde suppression of synaptic transmission through presynaptic µ receptors. Together, our data provide new evidence for retrograde opioid signaling at synapses in neuroendocrine circuits and represent a potential mechanism underlying glucocorticoid contributions to stress adaptation.


Asunto(s)
Analgésicos Opioides/metabolismo , Retroalimentación Fisiológica/fisiología , Glucocorticoides/metabolismo , Hipotálamo/citología , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Proteínas Bacterianas/genética , Channelrhodopsins , Inhibidores Enzimáticos/farmacología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurotransmisores/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/deficiencia , Receptores de Glucocorticoides/metabolismo , Receptores Opioides mu/genética , Estrés Psicológico/sangre , Estrés Psicológico/patología , Sinapsis/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética
6.
Neuron ; 71(3): 529-41, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21835348

RESUMEN

Changes in food availability alter the output of hypothalamic nuclei that underlie energy homeostasis. Here, we asked whether food deprivation impacts the ability of GABA synapses in the dorsomedial hypothalamus (DMH), an important integrator of satiety signals, to undergo activity-dependent changes. GABA synapses in DMH slices from satiated rats exhibit endocannabinoid-mediated long-term depression (LTD(GABA)) in response to high-frequency stimulation of afferents. When CB1Rs are blocked, however, the same stimulation elicits long-term potentiation (LTP(GABA)), which manifests presynaptically and requires heterosynaptic recruitment of NMDARs and nitric oxide (NO). Interestingly, NO signaling is required for eCB-mediated LTD(GABA). Twenty-four hour food deprivation results in a CORT-mediated loss of CB1R signaling and, consequently, GABA synapses only exhibit LTP(GABA). These observations indicate that CB1R signaling promotes LTD(GABA) and gates LTP(GABA). Furthermore, the satiety state of an animal, through regulation of eCB signaling, determines the polarity of activity-dependent plasticity at GABA synapses in the DMH.


Asunto(s)
Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Privación de Alimentos/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Receptor Cannabinoide CB1/fisiología , Saciedad/fisiología , Corticoesteroides/fisiología , Animales , Hipotálamo/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Óxido Nítrico/fisiología , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/fisiología , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/fisiología
7.
Am J Physiol Regul Integr Comp Physiol ; 299(6): R1709-19, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20943858

RESUMEN

A decrease in leptin levels with the onset of starvation triggers a myriad of physiological responses including immunosuppression and hypometabolism/hypothermia, both of which can counteract the fever response to pathogens. Here we examined the role of leptin in LPS-induced fever in rats that were fasted for 48 h prior to inflammation with or without leptin replacement (12 µg/day). The preinflammation fasting alone caused a progressive hypothermia that was almost completely reversed by leptin replacement. The LPS (100 µg/kg)-induced elevation in core body temperature (T(core)) was attenuated in the fasted animals at 2-6 h after the injection, an effect that was not reversed by leptin replacement. Increasing the LPS dose to 1,000 µg/kg caused a long-lasting fever that remained unabated for up to 36 h after the injection in the fed rats. This sustained response was strongly attenuated in the fasted rats whose T(core) started to decrease by 18 h after the injection. Leptin replacement almost completely restored the prolonged fever. The attenuation of the prolonged fever in the fasted animals was accompanied by the diminution of proinflammatory PGE(2) in the cerebrospinal fluid and mRNA of proopiomelanocortin (POMC) in the hypothalamus. Leptin replacement prevented the fasting-induced reduction of POMC but not PGE(2). Moreover, the leptin-dependent fever maintenance correlated closely with hypothalamic POMC levels (r = 0.77, P < 0.001). These results suggest that reduced leptin levels during starvation attenuate the sustained fever response by lowering hypothalamic POMC tone but not PGE(2) synthesis.


Asunto(s)
Temperatura Corporal/efectos de los fármacos , Fiebre/inducido químicamente , Fiebre/metabolismo , Privación de Alimentos/fisiología , Leptina/metabolismo , Análisis de Varianza , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Leptina/farmacología , Lipopolisacáridos/farmacología , Prostaglandinas/líquido cefalorraquídeo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Telemetría
8.
Eur J Neurosci ; 24(8): 2233-45, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17074047

RESUMEN

In addition to its central effects on appetite regulation, leptin has been implicated in immune function and inflammation. Previous data suggested that leptin acts as an inflammatory signal within the brain, as exogenously administered leptin induced fever, a typical brain-regulated inflammatory response. The present study aimed to delineate the inflammatory actions and cellular targets of leptin in the brain by examining its effects on the expression of interleukin (IL)-1beta and cyclooxygenase (COX)-2, two important inflammatory components of the fever response. Intracerebroventricular injection of leptin (5 microg/rat) induced IL-1beta and COX-2 mRNA and protein in the hypothalamus between 1 and 3 h after treatment as determined by reverse transcription-polymerase chain reaction and immunohistochemistry. Coinjection of IL-1 receptor antagonist (100 microg/rat, intracerebroventricular) attenuated leptin-induced COX-2, whereas IL-1 receptor antagonist had no effect on endogenous IL-1beta levels, suggesting that leptin induces COX-2 via, at least partly, IL-1beta action. IL-1beta protein expression was induced in macrophages in the meningis and perivascular space after leptin treatment, whereas COX-2 induction was observed in endothelial cells, indicating the roles for these non-neuronal cells in mediating inflammatory actions of leptin. In addition, neutralization of endogenous circulating leptin with anti-leptin antiserum attenuated intraperitoneal lipopolysaccharide (100 microg/kg)-induced brain IL-1beta and COX-2 upregulation, suggesting that leptin indeed acts as an inflammatory signal to the brain during systemic inflammation. These findings are in contrast to the effects of leptin on appetite regulation where it is believed to act primarily on neurons, thus presenting a distinct anatomical basis for the inflammatory and appetite regulatory actions of leptin in the brain.


Asunto(s)
Encéfalo/enzimología , Ciclooxigenasa 2/biosíntesis , Interleucina-1beta/fisiología , Leptina/farmacología , Animales , Apetito/fisiología , Encéfalo/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Inducción Enzimática/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/enzimología , Inmunohistoquímica , Inflamación/inducido químicamente , Inflamación/metabolismo , Inyecciones Intraventriculares , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/enzimología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA