Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 14(1): 3357, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336906

RESUMEN

Mutations in the KCNT1 potassium channel cause severe forms of epilepsy which are poorly controlled with current treatments. In vitro studies have shown that KCNT1-epilepsy mutations are gain of function, significantly increasing K+ current amplitudes. To investigate if Drosophila can be used to model human KCNT1 epilepsy, we generated Drosophila melanogaster lines carrying human KCNT1 with the patient mutation G288S, R398Q or R928C. Expression of each mutant channel in GABAergic neurons gave a seizure phenotype which responded either positively or negatively to 5 frontline epilepsy drugs most commonly administered to patients with KCNT1-epilepsy, often with little or no improvement of seizures. Cannabidiol showed the greatest reduction of the seizure phenotype while some drugs increased the seizure phenotype. Our study shows that Drosophila has the potential to model human KCNT1- epilepsy and can be used as a tool to assess new treatments for KCNT1- epilepsy.


Asunto(s)
Drosophila , Epilepsia , Canales de potasio activados por Sodio , Animales , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Evaluación Preclínica de Medicamentos , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Modelos Animales , Mutación , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Transgenes
2.
Arch Pharm Res ; 43(6): 582-592, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32594426

RESUMEN

Eriodictyol is a flavonoid in the flavanones subclass. It is abundantly present in a wide range of medicinal plants, citrus fruits, and vegetables that are considered to have potential health importance. Having the considerable medicinal properties, eriodictyol has been predicted to clarify the mode of action in various cellular and molecular pathways. Evidence for the existing therapeutic roles of eriodictyol includes antioxidant, anti-inflammatory, anti-cancer, neuroprotective, cardioprotective, anti-diabetic, anti-obesity, hepatoprotective, and miscellaneous. Therefore, this review aims to present the recent evidence regarding the mechanisms of action of eriodictyol in different signaling pathways in a specific disease condition. In view of the immense therapeutic effects, eriodictyol may serve as a potential drug source to enhance community health standards.


Asunto(s)
Antineoplásicos/farmacología , Flavanonas/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Fármacos Antiobesidad/química , Fármacos Antiobesidad/farmacología , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacología , Flavanonas/química , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Conformación Molecular , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología
3.
Biomed Pharmacother ; 100: 296-303, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29448206

RESUMEN

Ulcerative colitis (UC) is a major inflammatory bowel disease (IBD) has become a worldwide emergent disease. Veronica polita (VP) is a medicinal herb that has strong antioxidant and anti-inflammatory properties. In the present study, we studied the protective effect of VP on dextran sulfate sodium (DSS)-induced experimental colitis in mice. Phytochemical screening of VP extract demonstrated the presence of high total phenolic and flavonoid contents. Compared with the DSS group, VP significantly reduced clinical symptoms with less weight loss, bloody stool, shortening of the colon, and the severity of colitis was considerably inhibited as evidenced by the reduced disease activity index (DAI) and degree of histological damage in the colon and spleen. Also, treatment with VP considerably decreased the nitric oxide (NO) and malondialdehyde (MDA) level. VP remarkably downregulated the expression of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), inducible nitric oxide synthetase (iNOS) and cyclooxygenase-2 (COX-2) in the colon tissue. Likewise, activation of the signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappa B (NF-κB) was effectively blocked by VP. Taken together, these results demonstrate that VP has an ameliorative effect on colonic inflammation mediated by modulation of oxidative stress and inflammatory mediators by suppressing the JAK2/STAT3 and NF-κB signaling pathways.


Asunto(s)
Antiinflamatorios/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Janus Quinasa 2/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/uso terapéutico , Factor de Transcripción STAT3/metabolismo , Veronica/química , Animales , Antiinflamatorios/aislamiento & purificación , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Transducción de Señal
4.
Int J Mol Sci ; 19(2)2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370076

RESUMEN

Stress can lead to inflammation, accelerated aging, and some chronic diseases condition. Mentha arvensis (MA) is a traditional medicine having antioxidant and anti-inflammatory activities. The present study investigated the anti-stress role of MA and fermented MA (FMA) extract in immobilized rats. We studied the lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells and rats were immobilized for 2 h per day for 14 days using a restraining cage. MA (100 mg/kg) and FMA (100 mg/kg) were orally administered to rats 1 h prior to immobilization. Using high-performance liquid chromatography (HPLC) analysis, we determined the rosmarinic acid content of MA and FMA. The generation of malondialdehyde (MDA) and nitric oxide (NO) in RAW 246.7 cells were suppressed by both MA and FMA. In rats, MA and FMA notably improved the body weight, daily food intake, and duodenum histology. MDA and NO level were gradually decreased by MA and FMA treatment. MA and FMA significantly controlled the stress-related hormones by decreasing corticosterone and ß-endorphin and increasing serotonin level. Moreover, protein expression levels of mitogen activated protein kinases (MAPK) and cyclooxygenase-2 (COX-2) were markedly downregulated by MA and FMA. Taken together, MA and FMA could ameliorate immobilized-stress by reducing oxidative stress, regulating stress-related hormones, and MAPK/COX-2 signaling pathways in rats. Particularly, FMA has shown greater anti-stress activities than MA.


Asunto(s)
Mentha/química , Extractos Vegetales/uso terapéutico , Psicotrópicos/uso terapéutico , Estrés Psicológico/tratamiento farmacológico , Animales , Peso Corporal , Línea Celular , Corticosterona/sangre , Ciclooxigenasa 2/metabolismo , Ingestión de Alimentos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Malondialdehído/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico/metabolismo , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Psicotrópicos/farmacología , Ratas , Ratas Sprague-Dawley , Restricción Física/efectos adversos , Serotonina/sangre , Estrés Psicológico/etiología , betaendorfina/sangre
5.
Int J Mol Sci ; 18(7)2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28698525

RESUMEN

Sodium arsenite (NaAsO2) has been recognized as a worldwide health concern. Hydrangea macrophylla (HM) is used as traditional Chinese medicine possessing antioxidant activities. The study was performed to investigate the therapeutic role and underlying molecular mechanism of HM on NaAsO2-induced toxicity in human liver cancer (HepG2) cells and liver in mice. The hepatoprotective role of HM in HepG2 cells was assessed by using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT), reactive oxygen species (ROS), and lactate dehydrogenase (LDH) assays. Histopathology, lipid peroxidation, serum biochemistry, quantitative real-time polymerase chain reaction (qPCR) and Western blot analyses were performed to determine the protective role of HM against NaAsO2 intoxication in liver tissue. In this study, we found that co-treatment with HM significantly attenuated the NaAsO2-induced cell viability loss, intracellular ROS, and LDH release in HepG2 cells in a dose-dependent manner. Hepatic histopathology, lipid peroxidation, and the serum biochemical parameters alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were notably improved by HM. HM effectively downregulated the both gene and protein expression level of the mitogen-activated protein kinase (MAPK) cascade. Moreover, HM well-regulated the Bcl-2-associated X protein (Bax)/B-cell lymphoma-2 (Bcl-2) ratio, remarkably suppressed the release of cytochrome c, and blocked the expression of the post-apoptotic transcription factor caspase-3. Therefore, our study provides new insights into the hepatoprotective role of HM through its reduction in apoptosis, which likely involves in the modulation of MAPK/caspase-3 signaling pathways.


Asunto(s)
Arsenitos/toxicidad , Caspasa 3/metabolismo , Medicamentos Herbarios Chinos/farmacología , Hydrangea/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Compuestos de Sodio/toxicidad , Alanina Transaminasa/metabolismo , Apoptosis/efectos de los fármacos , Aspartato Aminotransferasas/metabolismo , Células Hep G2 , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
6.
Acta Sci Pol Technol Aliment ; 15(4): 429-438, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28071020

RESUMEN

BACKGROUND: Groundnut seeds are an important source of bioactive phenolic compounds with noteworthy antioxidant capacity, which may be enhanced by the microwave roasting process. The aim of this work is   to study the changes in antioxidant activity in groundnut seeds during microwave roasting, as a function of roasting time and extract concentration, in order to maximise the phenolic content and antioxidant activity of roasted seeds. METHODS: The study was conducted to evaluate total phenolic content (TPC), total flavonoid content (TFC), and antioxidative activity of methanolic (GME), ethanolic (GEE), and chloroform (GCE) extracts and methanolic extract of oil (GMO) from groundnut seeds exposed to microwaves. The antioxidant activity was investigated using several assays, namely phosphomolybdenum assay, DPPH radical scavenging activity, H2O2 scavenging activity, hydroxyl radical scavenging activity and reducing power. RESULTS: The microwave roasting process significantly increased the TPC, whilst the TFC decreased with roasting time. Antioxidant activity increased with increased roasting time and extract concentration in all extracts. Antioxidant activity increased significantly at lower concentrations; however, the rate of increment decreased gradually as the concentration of the solvent extract increased. Thus, among all the extracts, methanol extracts at all roasting times and extract concentrations appeared to display the highest effectiveness. The various scavenging activities of the samples are ranked in the following order: GME > GEE > GCE > GMO, in both raw and roasted samples. CONCLUSIONS: Both roasting time and extract concentration were found to be critical factors in determining the overall quality of the product. This investigation is important to determine optimum roasting conditions, in order to maximise the anti-oxidative health benefits of the Bangladeshi groundnut cultivar.


Asunto(s)
Antioxidantes/análisis , Arachis/química , Manipulación de Alimentos , Microondas , Bangladesh , Flavonoides/análisis , Análisis de los Alimentos , Fenoles/análisis , Extractos Vegetales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA