Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Neurobiol ; 61(3): 1237-1270, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37698833

RESUMEN

A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.


Asunto(s)
Productos Biológicos , Enfermedad de Huntington , Fármacos Neuroprotectores , Ratas , Animales , Enfermedad de Huntington/metabolismo , Ratas Wistar , Acetilcolinesterasa , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Productos Biológicos/uso terapéutico , Nitrocompuestos/farmacología , Propionatos/farmacología , Propionatos/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad
2.
Biomed Pharmacother ; 170: 116034, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141282

RESUMEN

The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.


Asunto(s)
Curcumina , Neoplasias , Humanos , Curcumina/farmacología , Curcumina/uso terapéutico , Curcumina/química , Neoplasias/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Transducción de Señal , Inflamación/tratamiento farmacológico
3.
Nat Prod Bioprospect ; 13(1): 45, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902881

RESUMEN

Hypertension (HTN), a complex cardiovascular disease (CVD), significantly impacts global health, prompting a growing interest in complementary and alternative therapeutic approaches. This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN, with an emphasis on the molecular mechanisms of action found in substances found in plants, herbs, and seafood. Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies. Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure (BP)-regulating effects of these natural substances better. Polyphenols, flavonoids, alkaloids, and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone, reducing oxidative stress (OS), reducing inflammation, and improving endothelial function. The article explains the vasodilatory, diuretic, and renin-angiotensin-aldosterone system (RAAS) modifying properties of vital plants such as garlic and olive leaf. Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs, providing diverse strategies to combat HTN due to their biological actions. The review also discusses the functions of calcium channel blockers originating from natural sources, angiotensin-converting enzyme (ACE) inhibitors, and nitric oxide (NO) donors. Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN. Omega-3 fatty acids, peptides, and minerals obtained from seafood sources have anti-inflammatory, vasodilatory, and antioxidant properties that improve vascular health and control BP. Overall, we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.

4.
Heliyon ; 9(7): e18090, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519687

RESUMEN

Pomegranate, scientifically known as Punica granatum, has been a traditional medicinal remedy since ancient times. Research findings have shown that using pomegranate extracts can positively affect a variety of signaling pathways, including those involved in angiogenesis, inflammation, hyperproliferation, cellular transformation, the beginning stages of tumorigenesis, and lastly, a reduction in the final stages of metastasis and tumorigenesis. This is due to the fact that pomegranate extracts are rich in polyphenols, which are known to inhibit the activity of certain signaling pathways. In the United States, cancer is the second biggest cause of death after heart disease. The number of fatalities caused by cancer in the United States escalates yearly. Altering one's diet, getting involved in regular physical activity, and sustaining a healthy body weight are three easy steps an individual may follow to lower their cancer risk. Simply garnishing one's diet with vegetables and fruits has the potential to avert at least 20% of all cancer diagnoses and around 200,000 deaths caused by cancer each year. Vegetables, fruits, and other dietary constituents, such as minerals and phytochemicals, are currently being researched for their potential to prevent cancer. It is being done because they are safe, have minimal toxicity, possess antioxidant properties, and are universally accepted as dietary supplements. Ancient civilizations used the fruit of pomegranate (Punica granatum L.) to prevent and cure a number of diseases. The anti-tumorigenic, anti-inflammatory and anti-proliferative qualities of pomegranate have been shown in studies with the fruit, juice, extract, and oil of the pomegranate. Pomegranate has the capacity to affect several signaling pathways, which implies that it may have the potential to be employed not only as a chemopreventive agent but also as a chemotherapeutic drug. This article elaborates on some recent preclinical and clinical research which shows that pomegranate seems to have a role in the prevention and treatment of a number of cancers, including but not limited to breast, bladder, skin, prostate, colon, and lung cancer, among others.

6.
Med Chem ; 19(4): 361-383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36043762

RESUMEN

SARS-CoV-2 was first discovered in Wuhan in late 2019 and has since spread over the world, resulting in the present epidemic. Because targeted therapeutics are unavailable, scientists have the opportunity to discover new drugs or vaccines to counter COVID-19, and therefore a number of synthetic bioactive compounds are now being tested in clinical studies. Due to its broad therapeutic spectrum and low adverse effects, medicinal herbs have been used as traditional healing medication in those countries for ages. Due to a lack of synthetic bioactive antiviral medications, pharmaceutical and alternative therapies have been developed using a variety of herbal compositions. Due to the widespread availability of herbal and dietary products worldwide, people frequently use them. Notably, the majority of Bangladeshi people continue to use a variety of natural plants and herbs to treat various types of diseases. This review article discusses how previous research has shown that some herbs in Bangladesh have immunomodulatory and antiviral effects and how their active ingredients have been gathered. Even though FDA-approved medications and vaccines are available for the treatment of COVID-19, the purpose is to encourage the use of herbal medicine as immunomodulators and vaccine adjuvants for the treatment of COVID-19 prevention.


Asunto(s)
COVID-19 , Plantas Medicinales , Humanos , Bangladesh/epidemiología , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico
7.
Front Pharmacol ; 13: 976385, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299886

RESUMEN

Natural substances originating from plants have long been used to treat neurodegenerative disorders (NDs). Parkinson's disease (PD) is a ND. The deterioration and subsequent cognitive impairments of the midbrain nigral dopaminergic neurons distinguish by this characteristic. Various pathogenic mechanisms and critical components have been reported, despite the fact that the origin is unknown, such as protein aggregation, iron buildup, mitochondrial dysfunction, neuroinflammation and oxidative stress. Anti-Parkinson drugs like dopamine (DA) agonists, levodopa, carbidopa, monoamine oxidase type B inhibitors and anticholinergics are used to replace DA in the current treatment model. Surgery is advised in cases where drug therapy is ineffective. Unfortunately, the current conventional treatments for PD have a number of harmful side effects and are expensive. As a result, new therapeutic strategies that control the mechanisms that contribute to neuronal death and dysfunction must be addressed. Natural resources have long been a useful source of possible treatments. PD can be treated with a variety of natural therapies made from medicinal herbs, fruits, and vegetables. In addition to their well-known anti-oxidative and anti-inflammatory capabilities, these natural products also play inhibitory roles in iron buildup, protein misfolding, the maintenance of proteasomal breakdown, mitochondrial homeostasis, and other neuroprotective processes. The goal of this research is to systematically characterize the currently available medications for Parkinson's and their therapeutic effects, which target diverse pathways. Overall, this analysis looks at the kinds of natural things that could be used in the future to treat PD in new ways or as supplements to existing treatments. We looked at the medicinal plants that can be used to treat PD. The use of natural remedies, especially those derived from plants, to treat PD has been on the rise. This article examines the fundamental characteristics of medicinal plants and the bioactive substances found in them that may be utilized to treat PD.

8.
Chem Biol Interact ; 368: 110170, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202214

RESUMEN

Colon cancer affects both men and women and is the world's second most significant cause of cancer-related mortality. Colon cancer death rates have risen worldwide due to the current food habit and lifestyle, which include a lot of meat, alcohol, and not enough physical exercise. As a result, novel, less harmful pharmacological treatments for colon cancer are needed now more than ever before. Colorectal cancer (CRC) affects a significant portion of the world's population. Chemotherapy's limits, as demonstrated by side effects and resistance in CRC patients, are now being sought after despite recent breakthroughs that have improved patient care and survival. Numerous chemical compounds present in medicinal herbs have shown anti-tumor and anti-apoptotic properties against various cancers, including CRC, in animal experiments. These chemicals, which come from several phytochemical families, activate several signaling pathways. This article discusses research on the anti-CRC benefits of many plants conducted in vitro, as well as the phytochemical components of plants that may play a role in the study. Researchers are also looking into the impact of these compounds on various pathways involved in cancer signaling. According to this review, anti-CRC compounds may be generated from medicinal plants. That's why we're looking at how natural items can help treat cancer while lowering the risk of developing it.


Asunto(s)
Productos Biológicos , Neoplasias del Colon , Neoplasias Colorrectales , Plantas Medicinales , Animales , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Plantas Medicinales/química , Fitoquímicos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/prevención & control
9.
Oxid Med Cell Longev ; 2022: 7743705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36062188

RESUMEN

Molecules with at least one unpaired electron in their outermost shell are known as free radicals. Free radical molecules are produced either within our bodies or by external sources such as ozone, cigarette smoking, X-rays, industrial chemicals, and air pollution. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. Although ROS (reactive oxygen species) are formed in the GI tract, little is known about how they contribute to pathophysiology and disease etiology. When reactive oxygen species and antioxidants are in imbalance in our bodies, they can cause cell structure damage, neurodegenerative diseases, diabetes, hypercholesterolemia, atherosclerosis, cancer, cardiovascular diseases, metabolic disorders, and other obesity-related disorders, as well as protein misfolding, mitochondrial dysfunction, glial cell activation, and subsequent cellular apoptosis. Neuron cells are gradually destroyed in neurodegenerative diseases. The production of inappropriately aggregated proteins is strongly linked to oxidative stress. This review's goal is to provide as much information as possible about the numerous neurodegenerative illnesses linked to oxidative stress. The possibilities of multimodal and neuroprotective therapy in human illness, using already accessible medications and demonstrating neuroprotective promise in animal models, are highlighted. Neuroprotection and neurolongevity may improve from the use of bioactive substances from medicinal herbs like Allium stadium, Celastrus paniculatus, and Centella asiatica. Many neuroprotective drugs' possible role has been addressed. Preventing neuroinflammation has been demonstrated in several animal models.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Neurodegenerativas , Animales , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Neuroprotección , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
10.
Front Cell Infect Microbiol ; 12: 929430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072227

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a substantial number of deaths around the world, making it a serious and pressing public health hazard. Phytochemicals could thus provide a rich source of potent and safer anti-SARS-CoV-2 drugs. The absence of approved treatments or vaccinations continues to be an issue, forcing the creation of new medicines. Computer-aided drug design has helped to speed up the drug research and development process by decreasing costs and time. Natural compounds like terpenoids, alkaloids, polyphenols, and flavonoid derivatives have a perfect impact against viral replication and facilitate future studies in novel drug discovery. This would be more effective if collaboration took place between governments, researchers, clinicians, and traditional medicine practitioners' safe and effective therapeutic research. Through a computational approach, this study aims to contribute to the development of effective treatment methods by examining the mechanisms relating to the binding and subsequent inhibition of SARS-CoV-2 ribonucleic acid (RNA)-dependent RNA polymerase (RdRp). The in silico method has also been employed to determine the most effective drug among the mentioned compound and their aquatic, nonaquatic, and pharmacokinetics' data have been analyzed. The highest binding energy has been reported -11.4 kcal/mol against SARS-CoV-2 main protease (7MBG) in L05. Besides, all the ligands are non-carcinogenic, excluding L04, and have good water solubility and no AMES toxicity. The discovery of preclinical drug candidate molecules and the structural elucidation of pharmacological therapeutic targets have expedited both structure-based and ligand-based drug design. This review article will assist physicians and researchers in realizing the enormous potential of computer-aided drug design in the design and discovery of therapeutic molecules, and hence in the treatment of deadly diseases.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Diseño de Fármacos , Humanos , SARS-CoV-2 , Replicación Viral
11.
Chemosphere ; 307(Pt 3): 136020, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35985383

RESUMEN

Neurodegenerative diseases (NDDs) are conditions that cause neuron structure and/or function to deteriorate over time. Genetic alterations may be responsible for several NDDs. However, a multitude of physiological systems can trigger neurodegeneration. Several NDDs, such as Huntington's, Parkinson's, and Alzheimer's, are assigned to oxidative stress (OS). Low concentrations of reactive oxygen and nitrogen species are crucial for maintaining normal brain activities, as their increasing concentrations can promote neural apoptosis. OS-mediated neurodegeneration has been linked to several factors, including notable dysfunction of mitochondria, excitotoxicity, and Ca2+ stress. However, synthetic drugs are commonly utilized to treat most NDDs, and these treatments have been known to have side effects during treatment. According to providing empirical evidence, studies have discovered many occurring natural components in plants used to treat NDDs. Polyphenols are often safer and have lesser side effects. As, epigallocatechin-3-gallate, resveratrol, curcumin, quercetin, celastrol, berberine, genistein, and luteolin have p-values less than 0.05, so they are typically considered to be statistically significant. These polyphenols could be a choice of interest as therapeutics for NDDs. This review highlighted to discusses the putative effectiveness of polyphenols against the most prevalent NDDs.


Asunto(s)
Berberina , Curcumina , Enfermedades Neurodegenerativas , Drogas Sintéticas , Curcumina/uso terapéutico , Genisteína , Humanos , Luteolina/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Nitrógeno , Oxígeno , Polifenoles/farmacología , Polifenoles/uso terapéutico , Quercetina , Resveratrol , Drogas Sintéticas/uso terapéutico
12.
Biomed Res Int ; 2022: 1640193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35941980

RESUMEN

Habb-e-Suranjan (HES), an Unani formulation, has been studied for its anti-inflammatory properties in both in vitro and in vivo experiments. HES is recommended for arthritis, gout, and joint pain. The current endeavor is an attempt to put it to the test and verify its efficacy scientifically. It was tested for DPPH, hydroxyl, and nitric oxide scavenging activities. It was shown that HES had the greatest TAC and FRAC values when compared to catechin and ascorbic acid. HES exhibited DPPH and hydroxyl radical scavenging activity that was dose-dependent. Incubation of sodium nitroprusside solutions in PBS at 25°C for 150 min resulted in the production of nitric oxide. Nitric oxide production was effectively decreased by HES. Anti-inflammatory medications boosted the migration of PMN cells toward the chemoattractant FMLP in an agarose experiment of PMN chemotaxis. In carrageenan-induced rat paw edema, in the HES-treated group, paw thickness was 3.021 ± 0.084 at t = 0, but it showed an increase in paw inflammation after one hour, i.e., 3.195 ± 0.082 cm which again showed a decrease in paw thickness up to 4th hour, i.e., 3.018 ± 0.078, 2.98 ± 0.032, and 2.684 ± 0.061 at t = 2, 3, and 4, respectively. It showed again getting back to the normal thickness of paw at t = 24 hrs, i.e., 3.029 ± 0.118 cm. It is concluded that the formulation is potent enough and can be used effectively for the treatment of inflammation and associated health issues. Moreover, there is much scope to evaluate its effectiveness using different in vitro and in vivo models.


Asunto(s)
Óxido Nítrico , Extractos Vegetales , Animales , Antiinflamatorios/uso terapéutico , Carragenina/efectos adversos , Edema/inducido químicamente , Edema/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Ratas
13.
Artículo en Inglés | MEDLINE | ID: mdl-35832521

RESUMEN

Diabetes mellitus (DM) is a fatal metabolic disorder, and its prevalence has escalated in recent decades to a greater extent. Since the incidence and severity of the disease are constantly increasing, plenty of therapeutic approaches are being considered as a promising solution. Many dietary polyphenols have been reported to be effective against diabetes along with its accompanying vascular consequences by targeting multiple therapeutic targets. Additionally, the biocompatibility of these polyphenols raises questions about their use as pharmacological mediators. Nevertheless, the pharmacokinetic and biopharmaceutical properties of these polyphenols limit their clinical benefit as therapeutics. Pharmaceutical industries have attempted to improve compliance and therapeutic effects. However, nanotechnological approaches to overcome the pharmacokinetic and biopharmaceutical barriers associated with polyphenols as antidiabetic medications have been shown to be effective to improve clinical compliance and efficacy. Therefore, this review highlighted a comprehensive and up-to-date assessment of polyphenol nanoformulations in the treatment of diabetes and vascular consequences.

14.
Biomed Pharmacother ; 150: 113041, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35658211

RESUMEN

BACKGROUND: Lung diseases including chronic obstructive pulmonary disease (COPD), infections like influenza, acute respiratory distress syndrome (ARDS), asthma and pneumonia lung cancer (LC) are common causes of sickness and death worldwide due to their remoteness, cold and harsh climatic conditions, and inaccessible health care facilities. PURPOSE: Many drugs have already been proposed for the treatment of lung diseases. Few of them are in clinical trials and have the potential to cure infectious diseases. Plant extracts or herbal products have been extensively used as Traditional Chinese Medicine (TCM) and Indian Ayurveda. Moreover, it has been involved in the inhibition of certain genes/protiens effects to promote regulation of signaling pathways. Natural remedies have been scientifically proven with remarkable bioactivities and are considered a cheap and safe source for lung disease. METHODS: This comprehensive review highlighted the literature about traditional plants and their metabolites with their applications for the treatment of lung diseases through experimental models in humans. Natural drugs information and mode of mechanism have been studied through the literature retrieved by Google Scholar, ScienceDirect, SciFinder, Scopus and Medline PubMed resources against lung diseases. RESULTS: In vitro, in vivo and computational studies have been explained for natural metabolites derived from plants (like flavonoids, alkaloids, and terpenoids) against different types of lung diseases. Probiotics have also been biologically active therapeutics against cancer, anti-inflammation, antiplatelet, antiviral, and antioxidants associated with lung diseases. CONCLUSION: The results of the mentioned natural metabolites repurposed for different lung diseases especially for SARS-CoV-2 should be evaluated more by advance computational applications, experimental models in the biological system, also need to be validated by clinical trials so that we may be able to retrieve potential drugs for most challenging lung diseases especially SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Enfermedades Pulmonares , Suplementos Dietéticos , Humanos , Enfermedades Pulmonares/tratamiento farmacológico , Medicina Tradicional China , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoterapia , Extractos Vegetales/farmacología , SARS-CoV-2
15.
Biomed Pharmacother ; 152: 113217, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35679719

RESUMEN

Diabetes mellitus (DM) is a metabolic syndrome. Diabetes has become more common in recent years. Chemically generated drugs are used to lessen the effects of DM and its following repercussions due to unpleasant side effects such as weight gain, gastrointestinal issues, and heart failure. On the other hand, medicinal plants could be a good source of anti-diabetic medications. This article aims to determine any plant matrix's positive potential. Food restriction, physical activity, and the use of antidiabetic plant-derived chemicals are all being promoted as effective ways to manage diabetes because they are less expensive and have fewer or no side effects. This review focuses on antidiabetic plants, along with their bioactive constituent, chemically characterization, and plant-based diets for diabetes management. There is minimal scientific data about the mechanism of action of the plant-based product has been found. The purpose of this article is to highlight anti-diabetic plants and plant-derived bioactive compounds that have anti-diabetic properties. It also provides researchers with data that may be used to build future strategies, such as identifying promising bioactive molecules to make diabetes management easier.


Asunto(s)
Diabetes Mellitus , Magnoliopsida , Plantas Medicinales , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Plantas Medicinales/química
16.
Curr Med Chem ; 29(32): 5289-5314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35400321

RESUMEN

Dementia and frailty increase health adversities in older adults, which are topics of growing research interest. Frailty is considered to correspond to a biological syndrome associated with age. Frail patients may ultimately develop multiple dysfunctions across several systems, including stroke, transient ischemic attack, vascular dementia, Parkinson's disease, Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, cortico-basal degeneration, multiple system atrophy, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease. Patients with dementia and frailty often develop malnutrition and weight loss. Rigorous nutritional, pharmacological, and non-pharmacological interventions generally are required for these patients, which is a challenging issue for healthcare providers. A healthy diet and lifestyle instigated at an early age can reduce the risk of frailty and dementia. For optimal treatment, accurate diagnosis involving clinical evaluation, cognitive screening, essential laboratory evaluation, structural imaging, functional neuroimaging, and neuropsychological testing is necessary. Diagnosis procedures best apply the clinical diagnosis, identifying the cause(s) and the condition(s) appropriate for treatment. The patient's history, caregiver's interview, physical examination, cognitive evaluation, laboratory tests, and structural imaging should best be involved in the diagnostic process. Varying types of physical exercise can aid the treatment of these disorders. Nutrition maintenance is a particularly significant factor, such as exceptionally high-calorie dietary supplements and a Mediterranean diet to support weight gain. The core purpose of this article is to investigate trends in the management of dementia and frailty, focusing on improving diagnosis and treatment. Substantial evidence builds the consensus that a combination of balanced nutrition and good physical activity is an integral part of treatment. Notably, more evidence-based medicine knowledge is required.


Asunto(s)
Enfermedad de Alzheimer , Fragilidad , Demencia Frontotemporal , Desnutrición , Anciano , Enfermedad de Alzheimer/diagnóstico , Fragilidad/diagnóstico , Fragilidad/terapia , Humanos , Pérdida de Peso
17.
Oxid Med Cell Longev ; 2022: 5100904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35450410

RESUMEN

Alzheimer's disease (AD) is a common neurodegenerative brain disorder that causes cellular response alterations, such as impaired cholinergic mechanism, amyloid-beta (Aß) AD aggregation, neuroinflammation, and several other pathways. AD is still the most prevalent form of dementia and affects many individuals across the globe. The exact cause of the disorder is obscure. There are yet no effective medications for halting, preventing, or curing AD's progress. Plenty of natural products are isolated from several sources and analyzed in preclinical and clinical settings for neuroprotective effects in preventing and treating AD. In addition, natural products and their derivatives have been promising in treating and preventing AD. Natural bioactive compounds play an active modulatory role in the pathological molecular mechanisms of AD development. This review focuses on natural products from plant sources and their derivatives that have demonstrated neuroprotective activities and maybe promising to treat and prevent AD. In addition, this article summarizes the literature pertaining to natural products as agents in the treatment of AD. Rapid metabolism, nonspecific targeting, low solubility, lack of BBB permeability, and limited bioavailability are shortcomings of most bioactive molecules in treating AD. We can use nanotechnology and nanocarriers based on different types of approaches.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Fármacos Neuroprotectores , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Humanos , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estudios Prospectivos
18.
Materials (Basel) ; 15(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35329610

RESUMEN

The field of nanotechnology is concerned with the creation and application of materials having a nanoscale spatial dimensioning. Having a considerable surface area to volume ratio, nanoparticles have particularly unique properties. Several chemical and physical strategies have been used to prepare zinc oxide nanoparticles (ZnO-NPs). Still, biological methods using green or natural routes in various underlying substances (e.g., plant extracts, enzymes, and microorganisms) can be more environmentally friendly and cost-effective than chemical and/or physical methods in the long run. ZnO-NPs are now being studied as antibacterial agents in nanoscale and microscale formulations. The purpose of this study is to analyze the prevalent traditional method of generating ZnO-NPs, as well as its harmful side effects, and how it might be addressed utilizing an eco-friendly green approach. The study's primary focus is on the potential biomedical applications of green synthesized ZnO-NPs. Biocompatibility and biomedical qualities have been improved in green-synthesized ZnO-NPs over their traditionally produced counterparts, making them excellent antibacterial and cancer-fighting drugs. Additionally, these ZnO-NPs are beneficial when combined with the healing processes of wounds and biosensing components to trace small portions of biomarkers linked with various disorders. It has also been discovered that ZnO-NPs can distribute and sense drugs. Green-synthesized ZnO-NPs are compared to traditionally synthesized ones in this review, which shows that they have outstanding potential as a potent biological agent, as well as related hazardous properties.

19.
Molecules ; 27(5)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35268815

RESUMEN

Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people's lives. Diabetes is a metabolic and endocrine illness set apart by hyperglycemia and glucose narrow-mindedness because of insulin opposition. Heftiness is a typical, complex, and developing overall wellbeing worry that has for quite some time been connected to significant medical issues in individuals, all things considered. Because of the wide variety and low adverse effects, herbal products are an important hotspot for drug development. Synthetic compounds are not structurally diverse and lack drug-likeness properties. Thus, it is basic to keep on exploring herbal products as possible wellsprings of novel drugs. We conducted this review of the literature by searching Scopus, Science Direct, Elsevier, PubMed, and Web of Science databases. From 1990 until October 2021, research reports, review articles, and original research articles in English are presented. It provides top to bottom data and an examination of plant-inferred compounds that might be utilized against heftiness or potentially hostile to diabetes treatments. Our expanded comprehension of the systems of activity of phytogenic compounds, as an extra examination, could prompt the advancement of remedial methodologies for metabolic diseases. In clinical trials, a huge number of these food kinds or restorative plants, as well as their bioactive compounds, have been shown to be beneficial in the treatment of obesity.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Diabetes Mellitus/tratamiento farmacológico , Humanos , Insulina/uso terapéutico , Obesidad/tratamiento farmacológico
20.
Antibiotics (Basel) ; 10(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34572660

RESUMEN

Natural products have been known for their antimicrobial factors since time immemorial. Infectious diseases are a worldwide burden that have been deteriorating because of the improvement of species impervious to various anti-infection agents. Hence, the distinguishing proof of antimicrobial specialists with high-power dynamic against MDR microorganisms is central to conquer this issue. Successful treatment of infection involves the improvement of new drugs or some common source of novel medications. Numerous naturally occurring antimicrobial agents can be of plant origin, animal origin, microbial origin, etc. Many plant and animal products have antimicrobial activities due to various active principles, secondary metabolites, or phytochemicals like alkaloids, tannins, terpenoids, essential oils, flavonoids, lectins, phagocytic cells, and many other organic constituents. Phytocomplexes' antimicrobial movement frequently results from a few particles acting in cooperative energy, and the clinical impacts might be because of the direct effects against microorganisms. The restorative plants that may furnish novel medication lead the antimicrobial movement. The purpose of this study is to investigate the antimicrobial properties of the phytocomplexes and natural extracts of the plants that are ordinarily being utilized as conventional medications and then recommended the chance of utilizing them in drugs for the treatment of multiple drug-resistant disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA