Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Sci ; 283: 95-115, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128719

RESUMEN

The green oleaginous microalga Lobosphaera incisa accumulates storage lipids triacylglycerols (TAG) enriched in the long-chain polyunsaturated fatty acid arachidonic acid under nitrogen (N) deprivation. In contrast, under phosphorous (P) deprivation, the production of the monounsaturated oleic acid prevails. We compared physiological responses, ultrastructural, and metabolic consequences of L. incisa acclimation to N and P deficiency to provide novel insights into the key determinants of ARA accumulation. Differential responses to nutrient deprivation on growth performance, carbon-to-nitrogen stoichiometry, membrane lipid composition and TAG accumulation were demonstrated. Ultrastructural analyses suggested a dynamic role for vacuoles in sustaining cell homeostasis under conditions of different nutrient availability and their involvement in autophagy in L. incisa. Paralleling ARA-rich TAG accumulation in lipid droplets, N deprivation triggered intensive chloroplast dismantling and promoted catabolic processes. Metabolome analysis revealed depletion of amino acids and pyrimidines, and repression of numerous biosynthetic hubs to favour TAG biosynthesis under N deprivation. Under P deprivation, despite the relatively low growth penalties, the presence of the endogenous P reserves and the characteristic lipid remodelling, metabolic signatures of energy deficiency were revealed. Metabolome adjustments to P deprivation included depletion in ATP and phosphorylated nucleotides, increased levels of TCA-cycle intermediates and osmoprotectants. We conclude that characteristic cellular and metabolome adjustments tailor the adaptive responses of L. incisa to N and P deprivation modulating its LC-PUFA production.


Asunto(s)
Ácido Araquidónico/metabolismo , Chlorophyta/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Microalgas/efectos de los fármacos , Nitrógeno/deficiencia , Fósforo/deficiencia , Chlorophyta/metabolismo , Chlorophyta/ultraestructura , Metabolómica , Microalgas/metabolismo , Microalgas/ultraestructura , Microscopía Electrónica , Microscopía Fluorescente , Triglicéridos/metabolismo
2.
PLoS One ; 13(12): e0208830, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30533056

RESUMEN

We established a new simple approach to study phosphorus (P) and nitrogen (N) reserves at subcellular level potentially applicable to various types of cells capable of accumulating P- and/or N-rich inclusions. Here, we report on using this approach for locating and assessing the abundance of the P and N reserves in microalgal and cyanobacterial cells. The approach includes separation of the signal from P- or N-rich structures from noise on the energy-filtered transmission electron microscopy (EFTEM) P- or N-maps. The separation includes (i) relative entropy estimation for each pixel of the map, (ii) binary thresholding of the map, and (iii) segmenting the image to assess the inclusion relative area and localization in the cell section. The separation is based on comparing the a posteriori probability that a pixel of the map contains information about the sample vs. Gaussian a priori probability that the pixel contains noise. The difference is expressed as relative entropy value for the pixel; positive values are characteristic of the pixels containing the payload information about the sample. This is the first known method for quantification and locating at a subcellular level P-rich and N-rich inclusions including tiny (< 180 nm) structures. We demonstrated the applicability of the proposed method both to the cells of eukaryotic green microalgae and cyanobacteria. Using the new method, we elucidated the heterogeneity of the studied cells in accumulation of P and N reserves across different species. The proposed approach will be handy for any cytological and microbiological study requiring a comparative assessment of subcellular distribution of cyanophycin, polyphosphates or other type of P- or N-rich inclusions. An added value is the potential of this approach for automation of the data processing and evaluation enabling an unprecedented increase of the EFTEM analysis throughput.


Asunto(s)
Microalgas/química , Energía Filtrada en la Transmisión por Microscopía Electrónica/métodos , Nitrógeno/análisis , Fósforo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA