Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 136: 108717, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004894

RESUMEN

Aquatic pollutants, including cadmium (Cd), cause oxidative stress on aquatic animals. The use of probiotics, including microalgae as a feed additive to alleviate the toxic impacts of heavy metals, is a much more interesting point. Hence, the current study investigated the oxidative stress and immunosuppression in Nile tilapia (Oreochromis niloticus) fingerlings caused by Cd toxicity as well as the preventive function of dietary Chlorella vulgaris against Cd toxicity. Accordingly, fish were fed on 0.0 (control), 5, and 15 g/kg diet of Chlorella up to satiation thrice a day, along with being exposed to 0.0 or 2.5 mg Cd/L for 60 days. Following the experimental procedure, fish from each group were intraperitoneally injected with Streptococcus agalactiae, and their survivability was observed for further ten days. Chlorella-supplemented diets meaningfully (P < 0.05) boosted the antioxidative capability of fish, which was evidenced by higher activities of hepatic superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) as well as higher levels of reduced glutathione (GSH) along with significant reductions in hepatic malondialdehyde levels. Moreover, the innate immunity indices [phagocytic activity (PA), respiratory burst activity (RBA), and alternative complement activity (ACH50)] were significantly higher in Chlorella-fed fish, particularly in the group of 15 g/kg diet. Additionally, serum of Chlorella-fed fish showed potent bactericidal activities against S. agalactiae, particularly at the treatment of a 15 g/kg diet. Feeding Chlorella diets to Nile tilapia fingerlings upregulated SOD, CAT, and GPx genes expression alongside the down-regulation of IL-1ß, IL-8, IL-10, TNF-α, and HSP70 genes expression. Conversely, Cd toxicity caused oxidative stress and suppressed the fish's innate immunity with upregulation of the expression of IL-1ß, IL-8, IL-10, TNF-α, and HSP70 genes. Feeding Cd-exposed fish on Chlorella-containing diets attenuated these adverse effects. The current research revealed that supplementing feeds with the treatment of 15 g/kg diet of C. vulgaris supports the antioxidant-immune responses and alleviates the Cd toxicity effects on Nile tilapia fingerlings.


Asunto(s)
Chlorella vulgaris , Cíclidos , Enfermedades de los Peces , Animales , Cadmio/toxicidad , Streptococcus agalactiae/fisiología , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-8 , Dieta/veterinaria , Suplementos Dietéticos , Antioxidantes/metabolismo , Estrés Oxidativo , Terapia de Inmunosupresión , Superóxido Dismutasa/metabolismo , Alimentación Animal/análisis , Enfermedades de los Peces/inducido químicamente
2.
Environ Sci Pollut Res Int ; 29(55): 83860-83877, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35771321

RESUMEN

Different activities related to uranium mining and nuclear industry may have a negative impact on the environment. Bioremediation of nuclear pollutants using microorganisms is an effective, safe, and economic method. The present study compared the uranium biosorption efficiency of two immobilized algae: Nostoc sp. (cyanophyte) and Scenedesmus sp. (chlorophyte). Effects of metal concentration, contact time, pH, and biosorbent dosage were also studied. The maximum biosorption capacity (60%) by Nostoc sp. was obtained at 300 mg/l uranium solution, 60 min, pH 4.5, and 4.2 g/l algal dosage, whereas Scenedesmus sp. maximally absorbed uranium (65 %) at 150 mg/l uranium solution, 40 min, pH 4.5, and 5.6 g/l of algal dosage. The interaction of metal ions as Na2SO4, FeCl3, CuCl2, NiCl2, CoCl2, CdCl2, and AlCl3 did not support the uranium biosorption by algae. The obtained data was adapted to the linearized form of the Langmuir isotherm model. The experimental qmax values were 130 and 75 mg/g for Nostoc sp. and Scenedesmus sp., respectively. Moreover, the pseudo-second-order kinetic model was more applicable, as the calculated parameters were close to the experimental data. The biosorbents were also characterized by Fourier-transform infrared spectroscopy (ATR-FTIR), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM) analyses. The results suggest the applicability of algae, in their immobilized form, for recovery and biosorption of uranium from aqueous solution.


Asunto(s)
Nostoc , Scenedesmus , Uranio , Contaminantes Químicos del Agua , Uranio/análisis , Adsorción , Cinética , Contaminantes Químicos del Agua/análisis , Iones , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno , Termodinámica
3.
Physiol Mol Biol Plants ; 27(10): 2151-2163, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34744358

RESUMEN

Two strains of the halophilic alga Dunaliella parva, a wild type (WT) and a transgenic strain (D-PSY) containing an exogenous phytoene synthase gene (PSY), were used to investigate the growth, carotenoid accumulation, and carotenoid antioxidant properties under nitrogen starvation, cobalt and biochar treatments. D-PSY had higher carotenoid content (1.8 times) compared to the WT. The applied stressors stimulated the carotenoid content of both WT and D-PSY especially. The carotenoids were assayed for the potential antioxidant activities by five different assays. Generally, the antioxidant activities of D-PSY carotenoids were superior to that of WT. The biochar and nitrogen treatments generally enhanced the antioxidant activities of the carotenoids, whereas cobalt came third in this respect. The D-PSY transgenic algal strain has both high carotenoids content and antioxidant properties which enhanced under the relatively lower concentrations of the applied stressors. The results have shown to lead to an accurate application of the transgenic alga as a source of potent antioxidant compounds. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01077-0.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA