Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 413(6855): 534-8, 2001 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-11586363

RESUMEN

Many higher plants have evolved self-incompatibility mechanisms to prevent self-fertilization. In Brassica self-incompatibility, recognition between pollen and the stigma is controlled by the S locus, which contains three highly polymorphic genes: S-receptor kinase (SRK), S-locus protein 11 (SP11) (also called S-locus cysteine-rich protein; SCR) and S-locus glycoprotein (SLG). SRK encodes a membrane-spanning serine/threonine kinase that determines the S-haplotype specificity of the stigma, and SP11 encodes a small cysteine-rich protein that determines the S-haplotype specificity of pollen. SP11 is localized in the pollen coat. It is thought that, during self-pollination, SP11 is secreted from the pollen coat and interacts with its cognate SRK in the papilla cell of the stigma to elicit the self-incompatibility response. SLG is a secreted stigma protein that is highly homologous to the SRK extracellular domain. Although it is not required for S-haplotype specificity of the stigma, SLG enhances the self-incompatibility response; however, how this is accomplished remains controversial. Here we show that a single form of SP11 of the S8 haplotype (S8-SP11) stabilized with four intramolecular disulphide bonds specifically binds the stigma membrane of the S8 haplotype to induce autophosphorylation of SRK8, and that SRK8 and SLG8 together form a high-affinity receptor complex for S8-SP11 on the stigma membrane.


Asunto(s)
Brassica/fisiología , Glicoproteínas/fisiología , Proteínas de Plantas/fisiología , Proteínas Quinasas/fisiología , Secuencia de Aminoácidos , Brassica/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Ligandos , Microsomas/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructuras de las Plantas/metabolismo , Estructuras de las Plantas/fisiología , Polen/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Reproducción
2.
Plant J ; 26(1): 69-76, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11359611

RESUMEN

Self-incompatibility (SI) in Brassica is sporophytically controlled by the multi-allelic S locus. SI phenotypes of the stigma and pollen in an S heterozygote are determined by the two S haplotypes it carries; the two haplotypes may be co-dominant or exhibit a dominant/recessive relationship. Because the S receptor kinase (SRK) gene of the S locus was recently shown to determine the S haplotype specificity of the stigma, we wished to investigate whether SRK also plays a role in the dominance relationships between S haplotypes. We crossed plants carrying an SRK28 transgene with plants homozygous for one of five S haplotypes that are either co-dominant with, or recessive to, S28 haplotype in the stigma, and analyzed the SI phenotypes of the progeny. In all cases, the SI phenotype of the stigma of plants carrying the SRK28 transgene could be predicted by the known dominance relationships between the S haplotype(s) and the S28 haplotype. Moreover, in the S43 homozygote carrying the SRK28 transgene where the S43 phenotype in the stigma was masked by the presence of the SRK28, the transcript level of SRK28 was found to be much lower than that of SRK43. All these results suggest that the dominance relationships between S haplotypes in the stigma are determined by SRK, but not by virtue of its relative expression level.


Asunto(s)
Brassica/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas/genética , Northern Blotting , Brassica/metabolismo , Brassica/fisiología , Cruzamientos Genéticos , Genes Dominantes , Genotipo , Haplotipos , Fenotipo , Proteínas de Plantas , Estructuras de las Plantas/genética , Estructuras de las Plantas/metabolismo , Polen/genética , Proteínas Quinasas/metabolismo , ARN Mensajero/análisis , Reproducción , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes
3.
Plant Physiol ; 125(4): 2095-103, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11299389

RESUMEN

Many flowering plants have evolved self-incompatibility (SI) systems to prevent inbreeding. In the Brassicaceae, SI is genetically controlled by a single polymorphic locus, termed the S-locus. Pollen rejection occurs when stigma and pollen share the same S-haplotype. Recognition of S-haplotype specificity has recently been shown to involve at least two S-locus genes, S-receptor kinase (SRK) and S-locus protein 11 or S-locus Cys-rich (SP11/SCR). SRK encodes a polymorphic membrane-spanning protein kinase, which is the sole female determinant of the S-haplotype specificity. SP11/SCR encodes a highly polymorphic Cys-rich small basic protein specifically expressed in the anther tapetum and in pollen. In cauliflower (B. oleracea), the gain-of-function approach has demonstrated that an allele of SP11/SCR encodes the male determinant of S-specificity. Here we examined the function of two alleles of SP11/SCR of B. rapa by the same approach and further established that SP11/SCR is the sole male determinant of SI in the genus Brassica sp. Our results also suggested that the 522-bp 5'-upstream region of the S9-SP11 gene used to drive the transgene contained all the regulatory elements required for the unique sporophytic/gametophytic expression observed for the native SP11 gene. Promoter deletion analyses suggested that the highly conserved 192-bp upstream region was sufficient for driving this unique expression. Furthermore, immunohistochemical analyses revealed that the protein product of the SP11 transgene was present in the tapetum and pollen, and that in pollen of late developmental stages, the SP11 protein was mainly localized in the pollen coat, a finding consistent with its expected biological role.


Asunto(s)
Brassica/genética , Proteínas de Plantas/genética , Polen/fisiología , Regiones Promotoras Genéticas , Proteínas Quinasas/genética , Agrobacterium tumefaciens/genética , Secuencia de Bases , Brassica/metabolismo , Homocigoto , Datos de Secuencia Molecular , Proteínas de Plantas/química , Plantas Modificadas Genéticamente/metabolismo , Polen/genética , Polimorfismo Genético , Proteínas Quinasas/metabolismo , Alineación de Secuencia , Eliminación de Secuencia , Homología de Secuencia de Ácido Nucleico , Transformación Genética
4.
FEBS Lett ; 473(2): 139-44, 2000 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-10812061

RESUMEN

Self-incompatibility (SI) enables flowering plants to discriminate between self- and non-self-pollen. In Brassica, SI is controlled by the highly polymorphic S locus. The recently identified male determinant, termed SP11 or SCR, is thought to be the ligand of S receptor kinase, the female determinant. To examine functional and evolutionary properties of SP11, we cloned 14 alleles from class-I S haplotypes of Brassica campestris and carried out sequence analyses. The sequences of mature SP11 proteins are highly divergent, except for the presence of conserved cysteines. The phylogenetic trees suggest possible co-evolution of the genes encoding the male and female determinants.


Asunto(s)
Brassica/genética , Glicoproteínas/genética , Proteínas de Plantas/genética , Polen/genética , Alelos , Secuencia de Aminoácidos , Mapeo Cromosómico , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , ADN de Plantas/genética , Electroforesis en Gel de Campo Pulsado , Evolución Molecular , Variación Genética , Haplotipos , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
5.
Proc Natl Acad Sci U S A ; 97(4): 1920-5, 2000 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-10677556

RESUMEN

Many flowering plants possess self-incompatibility (SI) systems that prevent inbreeding. In Brassica, SI is controlled by a single polymorphic locus, the S locus. Two highly polymorphic S locus genes, SLG (S locus glycoprotein) and SRK (S receptor kinase), have been identified, both of which are expressed predominantly in the stigmatic papillar cell. We have shown recently that SRK is the determinant of the S haplotype specificity of the stigma. SRK is thought to serve as a receptor for a pollen ligand, which presumably is encoded by another polymorphic gene at the S locus. We previously have identified an S locus gene, SP11 (S locus protein 11), of the S(9) haplotype of Brassica campestris and proposed that it potentially encodes the pollen ligand. SP11 is a novel member of the PCP (pollen coat protein) family of proteins, some members of which have been shown to interact with SLG. In this work, we identified the SP11 gene from three additional S haplotypes and further characterized the gene. We found that (i) SP11 showed an S haplotype-specific sequence polymorphism; (ii) SP11 was located in the immediate flanking region of the SRK gene of the four S haplotypes examined; (iii) SP11 was expressed in the tapetum of the anther, a site consistent with sporophytic control of Brassica SI; and (iv) recombinant SP11 of the S(9) haplotype applied to papillar cells of S(9) stigmas, but not of S(8) stigmas, elicited SI response, resulting in inhibition of hydration of cross-pollen. All these results taken together strongly suggest that SP11 is the pollen S determinant in SI.


Asunto(s)
Brassica/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Haplotipos , Hibridación in Situ , Datos de Secuencia Molecular , Proteínas de Plantas/química , Polen/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes , Alineación de Secuencia
6.
Nature ; 403(6772): 913-6, 2000 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-10706292

RESUMEN

The self-incompatibility possessed by Brassica is an intraspecific reproductive barrier by which the stigma rejects self-pollen but accepts non-self-pollen for fertilization. The molecular/biochemical bases of recognition and rejection have been intensively studied. Self-incompatibility in Brassica is sporophytically controlled by the polymorphic S locus. Two tightly linked polymorphic genes at the S locus, S receptor kinase gene (SRK) and S locus glycoprotein gene (SLG), are specifically expressed in the papillar cells of the stigma, and analyses of self-compatible lines of Brassica have suggested that together they control stigma function in self-incompatibility interactions. Here we show, by transforming self-incompatible plants of Brassica rapa with an SRK28 and an SLG28 transgene separately, that expression of SRK28 alone, but not SLG28 alone, conferred the ability to reject self (S28)-pollen on the transgenic plants. We also show that the ability of SRK28 to reject S28 pollen was enhanced by SLG28. We conclude that SRK alone determines S haplotype specificity of the stigma, and that SLG acts to promote a full manifestation of the self-incompatibility response.


Asunto(s)
Brassica/fisiología , Proteínas Quinasas/fisiología , Brassica/enzimología , Glicoproteínas/genética , Glicoproteínas/fisiología , Haplotipos , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Estructuras de las Plantas/fisiología , Plantas Modificadas Genéticamente , Polen/fisiología , Proteínas Quinasas/genética , Reproducción
7.
Proc Natl Acad Sci U S A ; 97(7): 3765-70, 2000 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-10716697

RESUMEN

Adhesion of pollen grains to the stigmatic surface is a critical step during sexual reproduction in plants. In Brassica, S locus-related glycoprotein 1 (SLR1), a stigma-specific protein belonging to the S gene family of proteins, has been shown to be involved in this step. However, the identity of the interacting counterpart in pollen and the molecular mechanism of this interaction have not been determined. Using an optical biosensor immobilized with S gene family proteins, we detected strong SLR1-binding activity in pollen coat extracts of Brassica campestris. Two SLR1-binding proteins, named SLR1-BP1 and SLR1-BP2, were identified and purified by the combination of SLR1 affinity column chromatography and reverse-phase HPLC. Sequence analyses revealed that these two proteins (i) differ only in that a proline residue near the N terminus is hydroxylated in SLR1-BP1 but not in SLR1-BP2, and (ii) are members of the class A pollen coat protein (PCP) family, which includes PCP-A1, an SLG (S locus glycoprotein)-binding protein isolated from Brassica oleracea. Kinetic analysis showed that SLR1-BP1 and SLR1-BP2 specifically bound SLR1 with high affinity (K(d) = 5.6 and 4.4 nM, respectively). The SLR1-BP gene was specifically expressed in pollen at late stages of development, and its sequence is highly conserved in Brassica species with the A genome.


Asunto(s)
Brassica/metabolismo , Proteínas de Plantas/aislamiento & purificación , Polen/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Regulación de la Expresión Génica de las Plantas , Cinética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Homología de Secuencia de Aminoácido
8.
Biosci Biotechnol Biochem ; 63(11): 1882-8, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10635553

RESUMEN

Self-incompatibility in Solanaceae is controlled by a single multiallelic locus, the S-locus. The S-allele associated ribonucleases (S-RNases) in the pistil are involved in pollen rejection. In this work, we analyzed two newly isolated lines of Petunia hybrida, termed PB and PF. They both had the same set of S-RNases (SB1- and SB2-RNases), however the PB was a self-incompatible diploid while PF was a self-compatible tetraploid. Cross pollination tests between PB and PF indicated diploid pollen from PF lost the incompatibility phenotype. In order to clarify the effects of polyploidy on pollen phenotypic change, we artificially induced tetraploid plants from a diploid SB1SB2 heterozygote (= PB) and a diploid SB1SB1 homozygote. The obtained SB1 SB1SB1SB1 homoallelic tetraploid remained self-incompatible, whereas the SB1SB1SB2SB2 heteroallelic tetraploid became self-compatible. These data suggested that the diploid heteroallelic pollen lost the incompatibility phenotype and had the characteristics of self-compatibility with SB1SB2 style.


Asunto(s)
Polen/genética , Ribonucleasas/genética , Solanaceae/genética , Alelos , Secuencia de Aminoácidos , Cruzamientos Genéticos , Diploidia , Glicoproteínas/genética , Homocigoto , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fenotipo , Polen/enzimología , Poliploidía , Ribonucleasas/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Solanaceae/enzimología , Solanaceae/fisiología
10.
J Antibiot (Tokyo) ; 50(2): 111-8, 1997 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9099219

RESUMEN

Aflastatin A, a novel inhibitor of the production of aflatoxin by aflatoxigenic fungi, has been isolated from the solvent extract of mycelial cake of Streptomyces sp. and its molecular formula was determined as C62H115NO24. Aflastatin A completely inhibited aflatoxin production by Aspergillus parasiticus NRRL 2999 in liquid medium or on agar plate at a concentration of 0.5 microgram/ml. The mycelial growth of this fungus was not affected in the liquid medium at the same concentration, while the hyphal extension rate was reduced on the plate together with some morphological changes. The growth of the fungus was not completely inhibited even at a concentration of 100 micrograms/ml. Aflastatin A exhibits antimicrobial activity against some bacteria, yeasts and fungi as well as antitumor activity.


Asunto(s)
Aflatoxinas/biosíntesis , Antibacterianos/farmacología , Aspergillus/efectos de los fármacos , Aspergillus/metabolismo , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/aislamiento & purificación , Antibióticos Antineoplásicos/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Aspergillus/crecimiento & desarrollo , Fenómenos Químicos , Química Física , Evaluación Preclínica de Medicamentos , Farmacorresistencia Microbiana , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica , Estructura Molecular , Pirrolidinonas , Streptomyces/química , Streptomyces/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA