Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemosphere ; 186: 558-569, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28810224

RESUMEN

Rocks excavated in tunnel construction projects for roads and railways throughout Japan often leached out hazardous trace elements like arsenic (As) and selenium (Se) upon their exposure to the environment. In nature, the various oxyanionic species of As and Se not only coexist but also exhibit contrasting adsorption-desorption behaviors, so speciation is a crucial factor in their migration through natural geologic media. In this study, the leaching and transport of arsenite (AsIII), arsenate (AsV), selenite (SeIV) and selenate (SeVI) in four tunnel-excavated rocks from the Cretaceous-Paleocene Yezo forearc basin were investigated using laboratory column experiments supplemented by batch leaching experiments. The single- and consecutive-batch leaching results revealed that AsIII, AsV, SeIV and SeVI were released simultaneously, which could be attributed to the rapid dissolution of trace evaporite salts found in the rocks. Arsenic in the leachates was also predominated by AsV while SeIV and SeVI concentrations were nearly equal, which are both consistent with predictions of equilibrium Eh-pH diagrams. Under intermittent and unsaturated flow, however, periods when AsIII and SeVI predominated in the effluents were observed. Spatial distributions of As and Se species with depth at the end of the column experiments suggest that migrations of AsIII, AsV and SeIV were delayed, the extent of which depended on the rock. These results indicate that migration and speciation of As and Se in the rocks are controlled by preferential adsorption-desorption reactions, the effects of which were most probably magnified by changes in the pH and concentrations of coexisting ions due to intermittent and unsaturated flow.


Asunto(s)
Arseniatos/análisis , Arsenitos/análisis , Sedimentos Geológicos/química , Minerales/química , Ácido Selénico/análisis , Ácido Selenioso/análisis , Adsorción , Japón , Tamaño de la Partícula , Solubilidad
2.
J Contam Hydrol ; 175-176: 60-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25747140

RESUMEN

Sedimentary rocks of marine origin excavated from tunnel construction projects usually contain background levels of hazardous trace elements, but when exposed to the environment, they generate leachates with concentrations of arsenic (As), selenium (Se) and boron (B) exceeding the WHO guideline for drinking water. In this study, the leaching of As, Se and B was evaluated under in situ conditions at various flow patterns, particle size distributions and column thicknesses. The results showed that these trace elements were leached out of the rock via short and long term mechanisms. In the short term, all three elements were rapidly and simultaneously released due to the dissolution of soluble evaporite salts formed from entrapped sea water of the Cretaceous. After their rapid release, however, these trace elements behaved differently as a result of their contrasting adsorption affinities onto minerals like clays and Fe-oxyhydroxides, which were further influenced by the pH, presence of coexisting ions and speciation of the trace elements. Selenium was quickly and easily transported out of the columns because it was mostly present as the very mobile selenate ion (Se[VI]). In comparison, the migration of As and B was hindered by adsorption reactions onto mineral phases of the rock. Boron was initially the least mobile among the three because of its preferential adsorption onto clay minerals that was further enhanced by the slightly alkaline pH and high concentrations of Ca(2+) and Na(+). However, it was gradually re-mobilized in the latter part of the experiments because it was only weakly adsorbed via outer sphere complexation reactions. In the long term, the rock continued to release substantial amounts of As, Se and B via pyrite oxidation and adsorption/desorption reactions, which were regulated by the temperature and rainfall intensity/frequency on site.


Asunto(s)
Arsénico/química , Boro/química , Sedimentos Geológicos/química , Selenio/química , Contaminantes Químicos del Agua/química , Adsorción , Agua Subterránea/química , Oxidación-Reducción , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA