Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lasers Med Sci ; 37(2): 1193-1201, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34363129

RESUMEN

Osteoarthritis (OA) and rheumatoid arthritis (RA) are common inflammation-associated cartilage degenerative diseases. Recent studies have shown that low-level diode laser treatment can reduce inflammatory cytokine expressions in cartilage. We recently reported that high-frequency low-level diode laser irradiation attenuates matrix metalloproteinases (MMPs) expression in human primary chondrocytes. However, the molecular mechanism underlying the effect of high-frequency low-level diode laser on chondrocytes remains unclear. Therefore, we aimed to elucidate the effect of high-frequency low-level diode laser irradiation on inflammatory cytokine expression in human primary chondrocytes. Normal human articular chondrocytes were treated with recombinant interleukin-1 beta (IL-1ß) for 30 min or 24 h and irradiated with a high-frequency NIR diode laser at 8 J/cm2. The expression of IL-1ß, interleukin-6, and tumor necrosis factor-alpha was assessed using western blot analysis. To evaluate the nuclear factor-kappa B (NF-κB) signaling pathway, the phosphorylation, translocation, and DNA-binding activity of NF-κB were detected using western blot analysis, immunofluorescence analysis, electrophoretic mobility shift assay, and enzyme-linked immunosorbent assay analysis. High-frequency low-level diode laser irradiation decreased inflammatory cytokine expression in IL-1ß-treated chondrocytes. Moreover, high-frequency low-level diode laser irradiation decreased the phosphorylation, nuclear translocation, and DNA-binding activity of NF-κB in the IL-1ß-treated state. However, irradiation alone did not affect NF-κB activity. Thus, high-frequency low-level diode laser irradiation at 8 J/cm2 can reduce inflammatory cytokine expressions in normal human articular chondrocytes through NF-κB regulation. These findings indicate that high-frequency low-level diode laser irradiation may reduce the expression of inflammatory cytokines in OA and RA.


Asunto(s)
Condrocitos , FN-kappa B , Células Cultivadas , Condrocitos/patología , Citocinas/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Láseres de Semiconductores/uso terapéutico , FN-kappa B/metabolismo , Transducción de Señal
2.
Pharm Dev Technol ; 21(6): 737-48, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26024240

RESUMEN

Alpha lipoic acid (ALA), an active substance in anti-aging products and dietary supplements, need to be masked with an edible polymer to obscure its unpleasant taste. However, the high viscosity of the ALA molecules prevents them from forming microcomposites with masking materials even in supercritical carbon dioxide (scCO2). Therefore, the purpose of this study was to investigate and develop a novel production method for microcomposite particles for ALA in hydrogenated colza oil (HCO). Microcomposite particles of ALA/HCO were prepared by using a novel gas-saturated solution (PGSS) process in which the solid-dispersion method is used along with stepwise temperature control (PGSS-STC). Its high viscosity prevents the formation of microcomposites in the conventional PGSS process even under strong agitation. Here, we disperse the solid particles of ALA and HCO in scCO2 at low temperatures and change the temperature stepwise in order to mix the melted ALA and HCO in scCO2. As a result, a homogeneous dispersion of the droplets of ALA in melted HCO saturated with CO2 is obtained at high temperatures. After the rapid expansion of the saturated solution through a nozzle, microcomposite particles of ALA/HCO several micrometers in diameter are obtained.


Asunto(s)
Dióxido de Carbono/química , Química Farmacéutica/métodos , Microesferas , Ácido Tióctico/síntesis química , Cromatografía con Fluido Supercrítico/métodos , Hidrogenación , Tamaño de la Partícula , Soluciones Farmacéuticas/análisis , Soluciones Farmacéuticas/síntesis química , Soluciones Farmacéuticas/farmacocinética , Ácido Tióctico/análisis , Ácido Tióctico/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA