Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 1917, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015467

RESUMEN

STXBP1 and SCN2A gene mutations are observed in patients with epilepsies, although the circuit basis remains elusive. Here, we show that mice with haplodeficiency for these genes exhibit absence seizures with spike-and-wave discharges (SWDs) initiated by reduced cortical excitatory transmission into the striatum. Mice deficient for Stxbp1 or Scn2a in cortico-striatal but not cortico-thalamic neurons reproduce SWDs. In Stxbp1 haplodeficient mice, there is a reduction in excitatory transmission from the neocortex to striatal fast-spiking interneurons (FSIs). FSI activity transiently decreases at SWD onset, and pharmacological potentiation of AMPA receptors in the striatum but not in the thalamus suppresses SWDs. Furthermore, in wild-type mice, pharmacological inhibition of cortico-striatal FSI excitatory transmission triggers absence and convulsive seizures in a dose-dependent manner. These findings suggest that impaired cortico-striatal excitatory transmission is a plausible mechanism that triggers epilepsy in Stxbp1 and Scn2a haplodeficient mice.


Asunto(s)
Cuerpo Estriado/metabolismo , Proteínas Munc18/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética , Neocórtex/metabolismo , Convulsiones/genética , Transmisión Sináptica , Potenciales de Acción/efectos de los fármacos , Animales , Anticonvulsivantes/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Dioxoles/farmacología , Electroencefalografía , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/metabolismo , Epilepsia Tipo Ausencia/fisiopatología , Etosuximida/farmacología , Regulación de la Expresión Génica , Haploinsuficiencia , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Interneuronas/patología , Ratones , Ratones Noqueados , Proteínas Munc18/deficiencia , Canal de Sodio Activado por Voltaje NAV1.2/deficiencia , Neocórtex/efectos de los fármacos , Neocórtex/patología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Piperidinas/farmacología , Receptores AMPA/genética , Receptores AMPA/metabolismo , Convulsiones/metabolismo , Convulsiones/fisiopatología , Convulsiones/prevención & control , Transducción de Señal , Tálamo/efectos de los fármacos , Tálamo/metabolismo
2.
J Neurosci ; 34(36): 12001-14, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186746

RESUMEN

NMDARs play a major role in patterning of topographic sensory maps in the brain. Genetic knock-out of the essential subunit of NMDARs in excitatory cortical neurons prevents whisker-specific neural pattern formation in the barrel cortex. To determine the role of NMDARs en route to the cortex, we generated sensory thalamus-specific NR1 (Grin1)-null mice (ThNR1KO). A multipronged approach, using histology, electrophysiology, optical imaging, and behavioral testing revealed that, in these mice, whisker patterns develop in the trigeminal brainstem but do not develop in the somatosensory thalamus. Subsequently, there is no barrel formation in the neocortex yet a partial afferent patterning develops. Whisker stimulation evokes weak cortical activity and presynaptic neurotransmitter release probability is also affected. We found several behavioral deficits in tasks, ranging from sensorimotor to social and cognitive. Collectively, these results show that thalamic NMDARs play a critical role in the patterning of the somatosensory thalamic and cortical maps and their impairment may lead to pronounced behavioral defects.


Asunto(s)
Conectoma , Aprendizaje por Laberinto , Proteínas del Tejido Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Somatosensorial/fisiología , Tálamo/metabolismo , Percepción del Tacto , Animales , Potenciales Evocados , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética , Conducta Social , Corteza Somatosensorial/metabolismo , Tálamo/fisiología , Núcleos del Trigémino/metabolismo , Núcleos del Trigémino/fisiología , Vibrisas/inervación , Vibrisas/fisiología
3.
Development ; 141(10): 2075-84, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24803655

RESUMEN

Thalamocortical axons (TCAs) pass through the prethalamus in the first step of their neural circuit formation. Although it has been supposed that the prethalamus is an intermediate target for thalamocortical projection formation, much less is known about the molecular mechanisms of this targeting. Here, we demonstrated the functional implications of the prethalamus in the formation of this neural circuit. We show that Olig2 transcription factor, which is expressed in the ventricular zone (VZ) of prosomere 3, regulates prethalamus formation, and loss of Olig2 results in reduced prethalamus size in early development, which is accompanied by expansion of the thalamic eminence (TE). Extension of TCAs is disorganized in the Olig2-KO dorsal thalamus, and initial elongation of TCAs is retarded in the Olig2-KO forebrain. Microarray analysis demonstrated upregulation of several axon guidance molecules, including Epha3 and Epha5, in the Olig2-KO basal forebrain. In situ hybridization showed that the prethalamus in the wild type excluded the expression of Epha3 and Epha5, whereas loss of Olig2 resulted in reduction of this Ephas-negative area and the corresponding expansion of the Ephas-positive TE. Dissociated cultures of thalamic progenitor cells demonstrated that substrate-bound EphA3 suppresses neurite extension from dorsal thalamic neurons. These results indicate that Olig2 is involved in correct formation of the prethalamus, which leads to exclusion of the EphA3-expressing region and is crucial for proper TCA formation. Our observation is the first report showing the molecular mechanisms underlying how the prethalamus acts on initial thalamocortical projection formation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Red Nerviosa/embriología , Proteínas del Tejido Nervioso/fisiología , Vías Nerviosas/embriología , Tálamo/embriología , Animales , Axones/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Embrión de Pollo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Red Nerviosa/metabolismo , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Factores de Transcripción/fisiología
4.
Neuron ; 82(2): 365-79, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24685175

RESUMEN

Thalamocortical (TC) connectivity is reorganized by thalamic inputs during postnatal development; however, the dynamic characteristics of TC reorganization and the underlying mechanisms remain unexplored. We addressed this question using dendritic refinement of layer 4 (L4) stellate neurons in mouse barrel cortex (barrel cells) as a model; dendritic refinement of L4 neurons is a critical component of TC reorganization through which postsynaptic L4 neurons acquire their dendritic orientation toward presynaptic TC axon termini. Simultaneous labeling of TC axons and individual barrel cell dendrites allowed in vivo time-lapse imaging of dendritic refinement in the neonatal cortex. The barrel cells reinforced the dendritic orientation toward TC axons by dynamically moving their branches. In N-methyl-D-aspartate receptor (NMDAR)-deficient barrel cells, this dendritic motility was enhanced, and the orientation bias was not reinforced. Our data suggest that L4 neurons have "fluctuating" dendrites during TC reorganization and that NMDARs cell autonomously regulate these dynamics to establish fine-tuned circuits.


Asunto(s)
Corteza Cerebral/citología , Dendritas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Receptores de N-Metil-D-Aspartato/metabolismo , Tálamo/fisiología , Animales , Animales Recién Nacidos , Corteza Cerebral/fisiología , Dendritas/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Neuronas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
5.
J Neurosci ; 28(43): 10928-36, 2008 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-18945900

RESUMEN

S100B is the principal calcium-binding protein of astrocytes and known to be secreted to extracellular space. Although secreted S100B has been reported to promote neurite extension and cell survival via its receptor [receptor for advanced glycation end products (RAGE)], effects of extracellular S100B on neural activity have been mostly unexplored. Here, we demonstrate that secreted S100B enhances kainate-induced gamma oscillations. Local infusion of S100B in S100B(-/-) mice enhanced hippocampal kainate-induced gamma oscillations in vivo. In a complementary set of experiments, local application of anti-S100B antibody in wild-type mice attenuated the gamma oscillations. Both results indicate that the presence of extracellular S100B enhances the kainate-induced gamma oscillations. In acutely isolated hippocampal slices, kainate application increased S100B secretion in a neural-activity-dependent manner. Further pharmacological experiments revealed that S100B secretion was critically dependent on presynaptic release of neurotransmitter and activation of metabotropic glutamate receptor 3. Moreover, the kainate-induced gamma oscillations were attenuated by the genetic deletion or antibody blockade of RAGE in vivo. These results suggest RAGE activation by S100B enhances the gamma oscillations. Together, we propose a novel pathway of neuron-glia communications--astrocytic release of S100B modulates neural network activity through RAGE activation.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Astrocitos/efectos de los fármacos , Relojes Biológicos/efectos de los fármacos , Ácido Kaínico/farmacología , Factores de Crecimiento Nervioso/metabolismo , Neuronas/efectos de los fármacos , Proteínas S100/metabolismo , Potenciales de Acción/genética , Animales , Relojes Biológicos/genética , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Inmunoglobulina G/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/inmunología , Factores de Crecimiento Nervioso/farmacología , Neuronas/fisiología , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/fisiología , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/deficiencia , Proteínas S100/inmunología , Proteínas S100/farmacología
6.
J Neurosci ; 28(23): 5931-43, 2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-18524897

RESUMEN

Experimental evidence from mutant or genetically altered mice indicates that the formation of barrels and the proper maturation of thalamocortical (TC) synapses in the primary somatosensory (barrel) cortex depend on mechanisms mediated by neural activity. Type 1 adenylyl cyclase (AC1), which catalyzes the formation of cAMP, is stimulated by increases in intracellular Ca(2+) levels in an activity-dependent manner. The AC1 mutant mouse, barrelless (brl), lacks typical barrel cytoarchitecture, and displays presynaptic and postsynaptic functional defects at TC synapses. However, because AC1 is expressed throughout the trigeminal pathway, the barrel cortex phenotype of brl mice may be a consequence of AC1 disruption in cortical or subcortical regions. To examine the role of cortical AC1 in the development of morphological barrels and TC synapses, we generated cortex-specific AC1 knock-out (CxAC1KO) mice. We found that neurons in layer IV form grossly normal barrels and TC axons fill barrel hollows in CxAC1KO mice. In addition, whisker lesion-induced critical period plasticity was not impaired in these mice. However, we found quantitative reductions in the quality of cortical barrel cytoarchitecture and dendritic asymmetry of layer IV barrel neurons in CxAC1KO mice. Electrophysiologically, CxAC1KO mice have deficits in the postsynaptic but not in the presynaptic maturation of TC synapses. These results suggest that activity-dependent postsynaptic AC1-cAMP signaling is required for functional maturation of TC synapses and the development of normal barrel cortex cytoarchitecture. They also suggest that the formation of the gross morphological features of barrels is independent of postsynaptic AC1 in the barrel cortex.


Asunto(s)
Adenilil Ciclasas/biosíntesis , Corteza Cerebral/enzimología , Corteza Cerebral/crecimiento & desarrollo , Sinapsis/fisiología , Tálamo/enzimología , Tálamo/crecimiento & desarrollo , Adenilil Ciclasas/genética , Animales , Corteza Cerebral/ultraestructura , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Mutantes , Vías Nerviosas/enzimología , Vías Nerviosas/ultraestructura , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Sinapsis/genética , Sinapsis/ultraestructura , Tálamo/ultraestructura
7.
J Comp Neurol ; 485(4): 280-92, 2005 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-15803506

RESUMEN

Development of whisker-specific neural patterns in the rodent somatosensory system requires NMDA receptor (NMDAR)-mediated activity. In cortex-specific NR1 knockout (CxNR1KO) mice, while thalamocortical afferents (TCAs) develop rudimentary whisker-specific patterns in the primary somatosensory (barrel) cortex, layer IV cells do not develop barrels or orient their dendrites towards TCAs. To determine the role of postsynaptic NMDARs in presynaptic afferent development and patterning in the barrel cortex, we examined the single TCA arbors in CxNR1KO mice between postnatal days (P) 1-7. Sparsely branched TCAs invade the cortical plate on P1 in CxNR1KO mice as in control mice. In control animals, TCAs progressively elaborate patchy terminals, mostly restricted to layer IV. In CxNR1KO mice, TCAs develop far more extensive arbors between P3-7. Their lateral extent is twice that of controls from P3 onwards. By P7, CxNR1KO TCAs have significantly fewer branch points and terminal endings in layers IV and VI but more in layers II/III and V than control mouse TCAs. Within expansive terminal arbors, CxNR1KO TCAs develop focal terminal densities in layer IV, corresponding to the rudimentary whisker-specific patches. Given that thalamic NMDARs are spared in CxNR1KO mice, the present results show that postsynaptic NMDARs play an important role in refinement of presynaptic afferent arbors and whisker-specific patterning in the developing barrel cortex.


Asunto(s)
Axones/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Receptores de N-Metil-D-Aspartato/deficiencia , Tálamo/crecimiento & desarrollo , Tálamo/metabolismo , Vías Aferentes/crecimiento & desarrollo , Vías Aferentes/metabolismo , Animales , Animales Recién Nacidos , Corteza Cerebral/citología , Ratones , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/genética , Tálamo/citología
8.
Mol Cell Neurosci ; 21(3): 477-92, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12498788

RESUMEN

N-Methyl-D-aspartate receptors (NMDARs) are important for synaptic refinement during development. In CxNR1KO mice, cortical excitatory neurons lack NR1, the essential subunit of the NMDAR, and in their primary somatosensory (S1) cortex whisker-specific cellular patterns, "barrels," are absent. Despite this cytoarchitectural defect, thalamocortical axons (TCAs) representing the mystacial vibrissae form topographically organized patterns and undergo critical period plasticity. This region-specific knockout mouse model allows for dissection of the mechanisms underlying patterning of the pre- and postsynaptic neural elements in the S1 cortex. In the absence of functional NMDARs, layer IV cell numbers are unaltered, but these cells fail to segregate into barrels. Furthermore, the dendritic fields of spiny stellate cells do not orient toward TCA terminal patches as in normal mice. Instead, they radiate in all directions covering larger territories, exhibiting profuse branching with increased spine density. Comparison of TCA patches with serotonin transporter (5-HTT) immunohistochemistry or Dil labeling also indicates that in the CxNR1KO cortex TCAs form smaller patches and individual axon terminal branching is not as well developed as in control cortex. Our results suggest that postsynaptic NMDAR activation is critical in communicating periphery-related sensory patterns from TCAs to barrel cells. When postsynaptic NMDAR function is disrupted, layer IV spiny stellate cells remain imperceptive to patterning of their presynaptic inputs and elaborate exuberant dendritic specializations.


Asunto(s)
Vías Aferentes/crecimiento & desarrollo , Diferenciación Celular/genética , Interneuronas/metabolismo , Proteínas de Transporte de Membrana , Proteínas del Tejido Nervioso , Terminales Presinápticos/metabolismo , Receptores de N-Metil-D-Aspartato/deficiencia , Corteza Somatosensorial/crecimiento & desarrollo , Transmisión Sináptica/genética , Vías Aferentes/citología , Vías Aferentes/metabolismo , Animales , Animales Recién Nacidos , Tipificación del Cuerpo/genética , Proteínas Portadoras/metabolismo , Polaridad Celular/genética , Dendritas/metabolismo , Dendritas/ultraestructura , Femenino , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/genética , Interneuronas/citología , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Terminales Presinápticos/ultraestructura , Receptores de N-Metil-D-Aspartato/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Transducción de Señal/genética , Corteza Somatosensorial/citología , Corteza Somatosensorial/metabolismo , Tálamo/citología , Tálamo/crecimiento & desarrollo , Tálamo/metabolismo
9.
J Neurosci ; 22(21): 9171-5, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12417641

RESUMEN

Neural activity plays an important role in refinement and plasticity of synaptic connections in developing vertebrate sensory systems. The rodent whisker-barrel pathway is an excellent model system to investigate the role of activity in formation of patterned neural connections and their plasticity. When whiskers on the snout or the sensory nerves innervating them are damaged during a critical period in development, whisker-specific patterns are altered along the trigeminal pathway, including the primary somatosensory (S1) cortex. In this context, NMDA receptor (NMDAR)-mediated activity has been implicated in patterning and plasticity of somatosensory maps. Using CxNR1KO mice, in which NMDAR1 (NR1), the essential NMDAR subunit gene, is disrupted only in excitatory cortical neurons, we showed that NMDAR-mediated activity is essential for whisker-specific patterning of barrel cells in layer IV of the S1 cortex. In CxNR1KO mice, thalamocortical axons (TCAs) representing the large whiskers segregate into rudimentary patches, but barrels as cellular modules do not develop. In this study, we examined lesion-induced TCA plasticity in CxNR1KO mice. TCA patterns underwent normal structural plasticity when their peripheral inputs were altered after whisker lesions during the critical period. The extent of the lesion-induced morphological plasticity and the duration of the critical period were quantitatively indistinguishable between CxNR1KO and control mice. We conclude that TCA plasticity in the neocortex is independent of postsynaptic NMDAR activity in excitatory cortical neurons, and that non-NMDAR-mediated cortical activity and/or subcortical mechanisms must be operational in this process.


Asunto(s)
Axones/fisiología , Proteínas de Transporte de Membrana , Proteínas del Tejido Nervioso , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Somatosensorial/fisiología , Animales , Animales Recién Nacidos , Proteínas Portadoras/metabolismo , Ácido Glutámico/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Mutantes , Ratones Transgénicos , Neuronas/citología , Receptores de N-Metil-D-Aspartato/deficiencia , Receptores de N-Metil-D-Aspartato/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Transmisión Sináptica/fisiología , Tálamo/fisiología , Vibrisas/inervación , Vibrisas/fisiología , Vías Visuales/fisiología
10.
Mech Dev ; 111(1-2): 47-60, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11804778

RESUMEN

Classical members of the UNC6/netrin family are secreted proteins which play a role as long-range cues for directing growth cones. We here identified in mice a novel member netrin-G2 which constitute a subfamily with netrin-G1 among the UNC6/netrin family. Both of these netrin-Gs are characterized by glycosyl phosphatidyl-inositol linkage onto cells, molecular variants presumably generated by alternative splicing and lack of any appreciable affinity to receptors for classical netrins. These genes are preferentially expressed in the central nervous system with complementary distribution in most brain areas, that is netrin-G1 in the dorsal thalamus, olfactory bulb and inferior colliculus, and netrin-G2 in the cerebral cortex, habenular nucleus and superior colliculus. Consistently, immunohistochemical analysis revealed that netrin-G1 molecules are present on thalamocortical but not corticothalamic axons. Thalamic and neocortical neurons extended long neurites on immobilized recombinant netrin-G1 or netrin-G2 in vitro. Immobilized anti-netrin-G1 antibodies altered shapes of cultured thalamic neurons. We propose that netrin-Gs provide short-range cues for axonal and/or dendritic behavior through bi-directional signaling.


Asunto(s)
Encéfalo/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuritas/fisiología , Secuencia de Aminoácidos , Animales , Encéfalo/embriología , Clonación Molecular , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Familia de Multigenes , Receptores de Netrina , Netrinas , Receptores de Superficie Celular/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA