Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Spine J ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38092193

RESUMEN

BACKGROUND CONTEXT: Bone morphogenetic proteins (BMPs) have potent osteoinductivity and have been applied clinically for challenging musculoskeletal conditions. However, the supraphysiological doses of BMPs used in clinical settings cause various side effects that prevent widespread use, and therefore the BMP dosage needs to be reduced. PURPOSE: To address this problem, we synthesized 7C, a retinoic acid receptor γ antagonist-loaded nanoparticle (NP), and investigated its potential application in BMP-based bone regeneration therapy using a rat spinal fusion model. STUDY DESIGN: An experimental animal study. METHODS: Fifty-three male 8-week-old Sprague-Dawley rats underwent posterolateral spinal fusion and were divided into the following five treatment groups: (1) no recombinant human (rh)BMP-2 and blank-NP (Control), (2) no rhBMP-2 and 1 µg 7C-NP (7C group), (3) low-dose rhBMP-2 (0.5 µg) and 1 µg blank-NP (L-BMP group), (4) low-dose rhBMP-2 (0.5 µg) and 1 µg 7C-NP (L-BMP + 7C group), and (5) high-dose rhBMP-2 (5.0 µg) and 1 µg blank-NP (H-BMP group). Micro-computed tomography and histologic analysis were performed 2 and 6 weeks after the surgery. RESULTS: The spinal fusion rates of the Control and 7C groups were both 0%, and those of the L-BMP, L-BMP + 7C, and H-BMP groups were 55.6%, 94.4%, and 100%, respectively. The L-BMP + 7C group markedly promoted cartilaginous tissue formation during BMP-induced endochondral bone formation that resulted in a significantly better spinal fusion rate and bone formation than in the L-BMP group. Although spinal fusion was slower in the L-BMP + 7C group, the L-BMP + 7C group formed a spinal fusion mass with better bone quality than the spinal fusion mass in the H-BMP group. CONCLUSIONS: The combined use of 7C-NP with rhBMP-2 in a rat posterolateral lumbar fusion model increased spinal fusion rate and new bone volume without deteriorating the quality of newly formed bone. CLINICAL SIGNIFICANCE: 7C-NP potentiates BMP-2-induced bone regeneration and has the potential for efficient bone regeneration with low-dose BMP-2, which can reduce the dose-dependent side effects of BMP-2 in clinical settings.

2.
J Orthop Res ; 36(4): 1135-1144, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28960501

RESUMEN

Heterotopic ossification (HO) develops in the extremities of wounded service members and is common in the setting of high-energy penetrating injuries and blast-related amputations. No safe and effective prophylaxis modality has been identified for this patient population. Palovarotene has been shown to reduce bone formation in traumatic and genetic models of HO. The purpose of this study was to determine the effects of Palovarotene on inflammation, progenitor cell proliferation, and gene expression following a blast-related amputation in a rodent model (n = 72 animals), as well as the ability of Raman spectroscopy to detect early HO before radiographic changes are present. Treatment with Palovarotene was found to dampen the systemic inflammatory response including the cytokines IL-6 (p = 0.01), TNF-α (p = 0.001), and IFN-γ (p = 0.03) as well as the local inflammatory response via a 76% reduction in the cellular infiltration at post-operative day (POD)-7 (p = 0.03). Palovarotene decreased osteogenic connective tissue progenitor (CTP-O) colonies by as much as 98% both in vitro (p = 0.04) and in vivo (p = 0.01). Palovarotene treated animals exhibited significantly decreased expression of osteo- and chondrogenic genes by POD-7, including BMP4 (p = 0.02). Finally, Raman spectroscopy was able to detect differences between the two groups by POD-1 (p < 0.001). These results indicate that Palovarotene inhibits traumatic HO formation through multiple inter-related mechanisms including anti-inflammatory, anti-proliferative, and gene expression modulation. Further, that Raman spectroscopy is able to detect markers of early HO formation before it becomes radiographically evident, which could facilitate earlier diagnosis and treatment. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1135-1144, 2018.


Asunto(s)
Células Madre Multipotentes/efectos de los fármacos , Osificación Heterotópica/prevención & control , Osteogénesis/efectos de los fármacos , Pirazoles/uso terapéutico , Estilbenos/uso terapéutico , Animales , Traumatismos por Explosión/complicaciones , Proliferación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Expresión Génica/efectos de los fármacos , Masculino , Osificación Heterotópica/etiología , Pirazoles/farmacología , Ratas Sprague-Dawley , Espectrometría Raman , Estilbenos/farmacología , Síndrome de Respuesta Inflamatoria Sistémica/prevención & control , Heridas Relacionadas con la Guerra/complicaciones
3.
J Orthop Res ; 35(5): 1096-1105, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27325507

RESUMEN

The nuclear retinoic acid receptors (RARs) play key roles in skeletal development and endochondral ossification. Previously, we showed that RARγ regulates chondrogenesis and that pharmacological activation of RARγ blocked heterotopic ossification (HO), pathology in which endochondral bone forms in soft tissues. Thus, we reasoned that pharmacological inhibition of RARγ should enhance endochondral ossification, leading to a potential therapeutic strategy for bone deficiencies. We created surgical bone defects in wild type and RARγ-null mice and monitored bone healing. Fibrous, cartilaginous, and osseous tissues formed in both groups by day 7, but more cartilaginous tissue formed in mutants within and around the defects compared to controls. Next, we implanted a mixture of Matrigel and rhBMP2 subdermally to induce ectopic endochondral ossification. Administration of RARγ antagonists significantly stimulated ectopic bone formation in wild type but not in RARγ-null mice. The antagonist-induced increases in bone formation were preceded by increases in cartilage formation and were accompanied by higher levels of phosphorylated Smad1/5/8 (pSmad1/5/8) compared to vehicle-treated control. Higher pSmad1/5/8 levels were also observed in cartilaginous tissues forming in healing bone defects in RARγ-null mice, and increases in pSmad1/5/8 levels and Id1-luc activity were observed in RARγ antagonist-treated chondrogenic cells in culture. Our data show that genetic or pharmacological interference with RARγ stimulates endochondral bone formation and does so at least in part by stimulating canonical BMP signaling. This pharmacologic strategy could represent a new tool to enhance endochondral bone formation in the setting of various orthopedic surgical interventions and other skeletal deficiencies. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1096-1105, 2017.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Receptores de Ácido Retinoico/antagonistas & inhibidores , Retinoides/farmacología , Animales , Huesos/metabolismo , Evaluación Preclínica de Medicamentos , Femenino , Proteína 1 Inhibidora de la Diferenciación , Ratones , Distribución Aleatoria , Receptores de Ácido Retinoico/genética , Proteínas Smad/metabolismo , Receptor de Ácido Retinoico gamma
4.
J Cell Physiol ; 193(2): 225-32, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12385000

RESUMEN

The roles of Sonic hedgehog (Shh) and Bone morphogenetic protein-2 (Bmp-2) in osteoblast differentiation were investigated using in vitro cell systems. Recombinant amino-terminal portion of SHH (rSHH-N) dose dependently stimulated ALP activity in C3H10T1/2 and MC3T3-E1 cells. rSHH-N induced expression of Osteocalcin mRNA in C3H10T1/2 cells. A soluble form of the receptor for type IA BMP receptor antagonized rSHH-N-induced ALP activity in C3H10T1/2 and MC3T3-E1 cells, indicating that BMPs are involved in SHH-induced osteoblast differentiation. Simultaneous supplement with rSHH-N and BMP-2 synergistically induced ALP activity and expression of Osteocalcin mRNA in C3H10T1/2 cells. Pretreatment with rSHH-N for 6 h enhanced the response to BMP-2 by increasing ALP activity in C3H10T1/2 and MC3T3-E1 cells. Stimulatory effects of rSHH-N and additive effects with rSHH-N and BMP-2 on ALP activity were also observed in mouse primary osteoblastic cells. Transplantation of BMP-2 (1 microg) into muscle of mice induced formation of ectopic bone, whereas transplantation of r-SHH-N (1-5 microg) failed to generate it. These results indicate that Shh plays important roles in osteoblast differentiation by cooperating with BMP.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Osteoblastos/citología , Transactivadores/fisiología , Fosfatasa Alcalina/análisis , Animales , Desarrollo Óseo , Proteína Morfogenética Ósea 2 , Diferenciación Celular , Línea Celular , Colágeno Tipo I/metabolismo , Relación Dosis-Respuesta a Droga , Inducción Embrionaria , Proteínas Hedgehog , Humanos , Ratones , Ratones Endogámicos C3H , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Osteoblastos/trasplante , Osteocalcina/efectos de los fármacos , Osteocalcina/metabolismo , Fragmentos de Péptidos/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes/farmacología , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo , Trasplantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA